

1

A Constraint-Based Approach for Analyzing Financial
Market Operations

Samuil Nikolov, Vladimir Nikolov,

Anatoliy Antonov

Abstract: The article describes a framework for modelling and verification of constraint rules on operations
with financial instruments. These constraints are applied on certain attributes of domains of financial objects.
A methodology and implementation of automatic constraint analysis in two steps is presented. The first step
involves preparation of constraints on specified domains and creation of formulas defining them. The other
step consists in waiting for real time transactions and responding to them by alerting the user on newly
occurred constraint violations. Computation reduction method is proposed. A satisfaction coefficient is
calculated that aids the end user in taking consecutive actions on their portfolio.

Keywords: Constraint satisfaction problems, Expert systems, Financial systems, Finance, Programming
approaches

INTRODUCTION

Modern financial markets are characterized by a rich variety of offered financial
instruments and include many participants with competitive goals, which are achieved in
highly dynamic market conditions. The financial instruments are often pooled in
hierarchical structures (classification groups) like portfolios, sub-portfolios by country,
currency, instrument type. The market participants must conform to regulatory rules
specifying the distribution of the assets under their control in the separate classification
groups. In many cases, the rules for asset allocation in the groups are alternative to each
other and require decision making. Due to the high complexity of the regulatory rules, the
market participants often make mistakes while operating on the highly dynamic markets
and violate the rules about the distribution of the limited financial resources. Thus, they
impose high risk on the organizations or people whose money they are dealing with. This
makes automatization of financial operation analysis in real time a priority. The market
participant must make a decision about buying or selling of a certain position before the
market trend changes. The dealer has to quickly simulate an operation on a position and
make sure all the constraint rules are satisfied before executing the deal on the market. To
ensure better experience for market participants and quickly identify constraint violations,
formal specification of regulatory rules is required. These regulatory rules are different for
each country and are based on local laws.
The problems reviewed in the article are related to constraint programming [1]. The
authors formally specify constraints using expressions and use constraint logic
programming over finite domains. The expressions are processed by a production system
program containing facts and rules. The proposed approach allows “What if...” simulations
and flexibility in taking alternative decisions. This guarantees continuity and validity of
market participants' actions. The analysis is performed in two steps. During the initial
check of the constraints, facts representing domains are asserted and synthetic rules are
generated from constraint specification by a special parsing rule. After firing, the new rules
yield the required result. The described step in a real-life system involves analysis of a
large number of positions included in the different hierarchical structures. The second step
involves real time simulation of single financial transactions, causing incremental changes
in one or several domains.

2

This reduces the rules that need recalculation only to those that are logically connected to
the changed position avoiding unnecessary recalculations and rule generations. Examples
in the article use the CLIPS production system syntax.
Chun et al. [5] show practical realization of constraint problems using the language
JSolver. The authors use constraint satisfaction problem solving methods in AI, declarative
programming and deterministic search in Java. Their solution is characterized by coding
JSolver instructions inside a Java program that calculates the result of the constraints after
being executed. The user has no control over constraint setup in run time.
Saad et al. [10] present a general constraint model of a rule based system. It is
represented as a new class of nonstandard constraint satisfaction problems called
Dynamic Domain Constraint Satisfaction Problem (DD CSP). DDCSP unify several CSP
extensions, providing a more comprehensive and efficient framework for rule based
reasoning. The proposed solutions to nonstandard problems are based on extensions,
through algorithms and methods that are encoded in the rule based systems solving the
CSP.
Felfernig et al. [6] develop a methodology for solving CSP in distributed applications using
agents. Their proposed solution is used for delivery and integration of product
configurations that require integration of configuration systems of different vendors. The
solution is based on direct coding of specific CSP problems in the developed system.
The other topic that this publication concerns is the ability of a program to extend itself.
Oreizy [8] reviews theoretically the ways this can be done and the problems that could
occur during the process. Usually code generation is done by wizards and intelligence
features of integrated development environments that do not operate in run time. Some
authors like Buck and Hollingsworth [4] generate debug information and performance
check routines in run time. This way the program is extended with highly specialized code.
Other ways of generating code in run time are used in aspect oriented programming.
Interesting developments are used in AspectJ [9] and Aspecktwerkz [3]. They can add
filters to the entry and exit points of functions and add new classes to java programs.

1. DEFINITION OF CONSTRAINTS

1.1 Specifying domains
The financial positions data of the traders in the described system are distributed in a tree
structure and are represented by a list of positions associated to every node in the
structure. The lists of every sub node of the structure can be obtained by applying certain
filter conditions on its parent node. The root node’s list is loaded according to a condition
associated with it. Domains are a set of positions and their attributes that are combined in
a specific node of the hierarchical structure. The method for specifying domains is shown
on figure 1. Every position participating in a position list is characterized by a set of
attributes – L1, L2, etc. Each attribute has its own value type. Aggregation functions can
be used to create new artificial attributes of data domains as shown on the figure. This
way, the set of attributes is expanded dynamically. Calculation functions like max, min, and
sum can be applied to attributes of the positions in the list to insert new items to the
domain data.

3

Figure 1. Domain definition method

1.2 Regulatory rule definition
Every regulatory rule is represented by logical expression defined over data in domain's
positions as shown on figure 2. Arguments of the expression are: single element attributes,
attributes of all elements, attributes added with aggregation calculations and aggregated
function values. These arguments can participate in algebraic functions (+, -, *,

/, ln, exp), conditional (>, >=, <, <=, =, <>) or loop (foreach) operations and arithmetic if
operator. Logical results (true or false) and alerts are calculated from the conditional

expressions. For every logical condition, a coefficient of satisfaction / violation can be
calculated because it is a comparison between two values. After the logical conditions are
defined, they are included in a constraint expression (formula) using the operators and, or,

Figure 2. Definition of regulation rule

4

not, or not, and not and parentheses.

2. PARSING AND CALCULATION OF CONSTRAINTS

After defining the constraint expression, compilation and compliance check can be started.
When a domain attribute definition is encountered, the parsing code generates a set of
facts. If an operation is encountered – it generates a rule and adds it to its own set of rules.
After the parsing is finished, the newly generated rules are fired, and their result is the
required constraint compliance. The code generated for one of each set of operations that
occur during the process of parsing will be reviewed.
When parsing a domain definition specified by a single position or filtered from the whole
list of positions, all the necessary attributes are loaded. For each position, the rule
generates two facts – the first contains root element identifier, the position identifier and
the list of concerned attributes. The second one contains a domain identifier and the
position identifier and is used to associate the position with the specified domain. For
example, to generate a position in German 5-year bunds with notional amount of 100000
associated with the domain GovernmentBond the parser generates the following
production system facts:

(Portfolio German5yBund 100000.0) (1)
(GovernmentBond German5yBund)

To define unions, intersections, differences and symmetric differences of two domains,
new rules are added to the production system program. They use two declarations of
domain association to generate a third one - to the new resulting domain. The following
example rule shows a generated rule that unites the domains "government bond" and
"corporate bond" in a new domain – "bond":

(defrule GenUnionBond
(or
(logical (GovernmentBond ?PosId)) (2)
(logical (CorporateBond ?PosId))

)
=>

(assert (Bond ?PosId))
)

The parsing rule also generates rules for arithmetical and group operations on the defined
domains. It generates different identifiers for the results of each such operation. For
example, to summarize the notional amounts of all the loaded positions, the following rule
is generated:

(defrule Sum1
(logical (forall(Portfolio ?PosId ?PosValue)))
?c1<-(Aggregate1 ?Value)
=> (3)
(if (<> ?PosValue 0.0) then

(retract ?c1)
(assert (Aggregate1 (+ ?Value ?PosValue)))

))

For the other group and arithmetical operations, similar rules are generated. The

5

approach is also used when generating logical rules. The difference is that in their case,
besides the result - true or false, the parser also generates instructions to calculate the
level of satisfaction of the logical operation. Adding comparison operation for two
previously generated arithmetic operations – one aggregation and one multiplication is
done by generating and adding the following rule to the program:

(defrule Less1
(logical (Aggregate2 ?Value1))
(logical (Multiplication1 ?Value2))
=> (4)
(assert (Less1 (< ?Value1 ?Value2) (/ (- ?Value2 ?Value1) ?Value2)))

)

The final result of the constraint processing is a combination of logical condition results
connected with and, or, not, and not, and or not. The generated rules use reasoning
maintenance [11] principle when fired. It requires the production system to make sure that
the assertions of facts on the right-hand side (RHS) of a rule are logically dependent upon
pattern entities matching patterns on the left-hand side (LHS) of a rule. Thus, when a rule’s
precondition fact is retracted, the production system will automatically retract the facts
asserted in the RHS from its knowledge base. As many of the generated rules use the
results from other rules, removing a fact describing a position will cause a chain of fact
retracting and cause recalculation of the rule results. The notable thing here is that such
action will cause recalculation of only the concerned rules or only the parts of the
constraint that are affected by the position removal or change.

3. REAL TIME OPERATION
After parsing the constraint expression and generating the rules and facts for it, the
production system contains a set of newly created mutually dependent rules in its working
memory. Their preconditions are either domain attribute descriptors or results of
operations on such. Due to simulation of market trading, new attribute values can be
added, or the existing ones can be changed or deleted. Checking the compliance of the
portfolio with the regulatory requirements is a complex process due to the need for
affiliation checks, aggregation and group function calculations. For example, to execute the
maximum function, the system has to perform different actions if the maximal element is
removed compared to the case when a smaller element is removed. Adding a new
element to a domain that is a parameter of minimum function somewhere inside the
expression should cause different behavior if the new element is the minimum, or if it is
larger than the current one in the domain. Such considerations apply to all the other
aggregation or calculation functions. This is the reason why they are implemented by
generating a rule rather than a simple expression using production system’s internal
functions as in [2]. The rules have a set of facts as preconditions - representing the
function arguments and assert a new fact - representing the function result. The changed
value of the modified position affects only limited set of rules as is shown on figure 3. Firing
only the affected rules recalculates the satisfaction coefficient of the logical conditions and
the market trader can be alerted by the system about violated or nearly- violated rules
resulting from his intended transaction. By reducing the number of fired rules, the end user
is notified about the suitability of his market intentions before the current market conditions
change.

6

Figure 3. Local propagation of changes in the system in run time

4. EXAMPLE CONSTRAINT DEFINITION

As an example, a regulation will be reviewed that requires an investment company (a
pension fund for example) to invest more than 50% of their assets in government bonds,
less than 40% of their assets in corporate bonds, less than 20% in shares and less than
90% in any type of bonds. The first thing that needs to be done while defining the
constraint is to determine the necessary domains and attributes inside it. In this case, a
single attribute is used - the notional amount of the concerned position lists, which is
referred in the constraint expression as [Not.Amount]. The domains are as follows: the full
portfolio of the investment company ([Portfolio]), a subportfolio containing government
bonds ([Government Bond]), a subportfolio containing corporate bonds ([Corporate Bond]),
a subportfolio containing Shares ([Share]) and the union between government and
corporate bonds ([Government Bond Union Corporate Bond]). The next step is to define
each of the arithmetical and logical operations on them. For instance, to define the first
logical operation (at least 50% of the investment assets should be in government bonds) a
declaration should be added that the sum of the domain containing the notional amounts
of government bonds should be more than the sum of the notional amounts of the
positions in the entire portfolio, multiplied by 0.5. This can be specified as:

Sum([Government Bond].[Not.Amount]) > 0.5*Sum([Portfolio].[Not.Amount]) (5)

Similarly, all the logical operations are generated and connected with the “and” logical
operation. The final expression, representing the example regulatory requirements is as
follows:

Sum([Government Bond].[Not.Amount]) > 0.5*Sum([Portfolio].[Not.Amount])
and Sum([Corporate Bond].[Not.Amount]) < 0.4* Sum([Portfolio].[Not.Amount])
and Sum([Share].[Not.Amount]) < 0.2* Sum([Portfolio].[Not.Amount]) (6)

7

and Sum([Government Bond Union Corporate Bond].[Not.Amount]) < 0.9*
Sum([Portfolio].[Not.Amount])

When the production system program is started, first the parsing rules are fired to generate
new facts and rules. In this case, they recognize the domains and their attributes and load
the notional amounts of the available positions. For each loaded position, a fact like the
first one in (1) is generated. A set of basic domain assignment facts like the second fact in
(1), is asserted, taking into consideration each position underlying instrument’s type. The
domain identifiers in the facts are GovernmentBond, CorporateBond and Share. For the
complex domain representing the union between "Government Bond" and "Corporate
Bond", the rule (2) is generated. It asserts a new fact that specifies the members of the
Bond domain as all the members of government or corporate bond domains. For each
distinct "Sum" operation in the condition expression, a rule similar to (3) is generated. The
rule names and resulting facts are substituted with properly generated identifiers. The rule
condition is changed so that it uses the domain identifier that is being summarized. It is
fired for each fact containing the particular domain identifier and a position identifier. The
rule (3) summarizes all the notional amounts of portfolio positions and is generated for
each right side of the comparisons in the example expression. For the comparison
operations and the logical and between them, rules similar to (4) are generated. After the
parsing phase, the program contains a set of new facts and a set of generated rules that
represent the example expression. The production system program thus expands itself as
result of parsing the input expression.
The next step is to check if the current portfolio setup conforms to the specified
requirements. This is done automatically when the rules are generated – after the parsing
stops, the newly generated rules are on the production system's agenda and firing
according to their dependencies. The results of the constraints application on the tested
portfolio are inside the asserted facts and can be visualized with proper tools. Every logical
condition result fact also contains the satisfaction coefficient of the condition. Considering
it, the end user can change the nominal of the positions, delete some of them or insert new
ones to certain domains in order to satisfy the conditions, if these are not satisfied initially.
If the portfolio satisfies the constraints encoded in the expression, the user can experiment
with adding, deleting or modifying positions and thus simulating what will happen if actual
transactions are exercised. Let’s suppose the position described with the fact (1) needs to
be sold to the market. This action is done by retracting the two facts that were asserted
when the position was loaded. Retracting them will remove the logical support for the
assertions in several other rules. Removing a fact's logical support causes production
systems to retract the fact itself from its knowledge base. For instance, the fact that states
that German5yBund is a member of the Bond domain, that is generated by a firing of rule
(2) would also be retracted. The sum of the portfolio positions calculated by rule (3) will
also be retracted as will be the sum of the notional amounts of the positions in
GovernmentBond domain. The sums will then be recalculated again without the nominal of
the German5yBund. Retracting the fact that declares the position as member of the Bond
domain will cause also recalculation of that domain's sum, but the sums of corporate
bonds and shares will not be affected as their preconditions are not affected by the
change. Thus, only the calculations that are necessary are performed which allows faster
verification of the compliance.

CONCLUSIONS AND FUTURE WORK

The main features of the presented methodology are:

• The described approach allows representing regulatory rules using expressions
defined by the user. The production system’s program is evolving due to user input,
generating facts and rules corresponding to the supplied expression. Processing of the

8

expressions cause loading of only the object sets and attributes that are concerned by the
regulatory rules;

• The code generation, loading and execution approach combined with the
mechanism of local propagation of changes allows distinguishing and executing only the
necessary calculations thus enhancing the productivity in market simulation mode. This is
possible due to generating rules for all arithmetic, comparison and logical operations as
well as the group functions included in the expression. Only affected rules are fired after a
knowledge base modification occurs.
The presented approach is implemented by the authors in a commercial system. A
developed interactive interface allows the user to correctly form the expressions
corresponding to the regulatory rules. The expressions can contain string, date and
enumerated types of attributes besides the numeric ones, demonstrated in the article. The
development supports use of financial position lists and is a part of a framework for
building ontology-based dynamic applications [7]. Actual participation of the user in the
market is being simulated by the implemented system. The described approach can be
used in other cases where constraint modelling is required.

REFERENCES

[1] Apt K. Principles of constraint programming. Cambridge University Press, 2003.
[2] Bessiere C. Constraint propagation. Foundations of Art. Intell. 2, 2006, pp.29-83.
[3] Bonêr J. Aspectwerkz - dynamic aop for java. In Proc. of the 3rd Int. Conf. on

Aspect-Oriented Software Development, Mancaster, UK, 2004, ACM Press.
[4] Buck B. and Hollingsworth J. An API for Runtime Code Patching. Int. J. High

Perform. Comput. Appl. 14, 4 , 2000, pp. 317-329.
[5] Chun A., Hon A., Chun W., Waltz Filtering in Java with Jsolver, In Proc. of the

Practical Applications of Java, London, 1999.
[6] Felfernig A. et al. Distributed Configuration as Distributed Dynamic Constraint

Satisfaction. In Proc. of the 14th IEA/AIE, Budapest, Hungary, 2001, pp. 434–444.
[7] Nikolov S. and Antonov A. Framework for building ontology-based dynamic

applications. In Proc. CompSysTech, 2010, pp. 83-88.
[8] Oreizy P., Medvidovic N. and Taylor R. Architecture-based runtime software

evolution. In Proc. 20th int. conf. on Software engineering, 1998, pp.177-186.
[9] Russ M. AspectJ Cookbook. O'Reilly Media, 2004.
[10] Saad B. et al. DDCSP: Constraint satisfaction problem used for rule-based

system. Int. Conf. on Data Storage and Data Engineering, IEEE, 2010.
[11] Smith B. and Kelleher G. Reason Maintenance Systems and their Applications.

Halsted Press, 1988, New York, NY, USA

ABOUT THE AUTHORS
Eurorisk Systems Ltd.
31, General Kiselov Str.
9002 Varna, Bulgaria

Samuil Nikolov
E-mail: samuil at eurorisksystems dot com
Vladimir Nikolov
E-mail: nikolov at eurorisksystems dot com
Anatoliy Antonov
Е-mail: antonov at eurorisksystems dot com

mailto:samuil@eurorisksystems.com
mailto:nikolov@eurorisksystems.com

