

1

A Theory and Approach for Developing Cloud Applications

Danko Naydenov

Abstract: In this paper, a methodology will be considered that can be used to create cloud applications.
There are many possible approaches, but this one was chosen because it is easy to be used and accessed.
System requirements overview is made. For selected approach it is considered some application programing
interfaces for user maintenance and authentication, storing data and deploying the application. It is
discussed how standard technologies can be apply to this service also an overview of some security
requirements is made.

Keywords: Cloud computing, PaaS, Cloud application

Introduction

With the development of information technology, users and developers turn to cloud
services. The reasons for this are several, namely the low cost of initial investment, the
high availability and the reliability of applications, the low cost of maintenance and others
[6].

Goals and objectives

The goal that sets this paper is to demonstrate a methodology for developing cloud
applications.
To achieve this goal, a task is defined to develop a sample application representing a chat
room. This application has to be designed for cloud environment. It has to be deployed
there and has to work in such an environment.

Analysis of the problem

On the market, there are many cloud vendors and various cloud services that can be
grouped into three main models [6]:

Infrastructure as a Service (IaaS)
Platform as a Service (PaaS)
Software as a Service (SaaS)

The most appropriate service for the development of applications is PaaS. The reason for
this is that the approach which is used to create a cloud application largely resembles the
development of a standard WEB application.
The provider selected is Google and their offering PaaS - Google App Engine. This choice
is based on following factors:

• Cloud computing is a relatively new technology, and offering such a service
requires a significant investment, not a variety of providers are available, and
participants are giants like Microsoft, Amazon, Google and others;

• Google prevailed in the election because they currently offer free access to
develop, test and deploy cloud applications;

• The cloud service provided by Google offers the possibility to use several
languages. This paper will focus on Java [3];

System requirements and installation of work environment

It is assumed that the developer has an installed and working version of Java [3]. Because
the Google App Engine works using Java 7, the cloud service provider recommends using
the same version to build the application.

2

To develop cloud application, Google offers App Engine Java Software Development Kit
(SDK). This is an environment that emulates all aspects of the cloud, which however,
works locally and allows the used to develop and test the application.
App Engine Java SDK is a standalone application that does not have a high degree of
automation. Eclipse [2] is one of the most popular development environments for Java [3]
applications, and that is why Google offers a Plugin for it. Developing application for
Google App Engine is easy and similar to the development of a servlet [5] application. By
using the Google Plugin, this task is even easier because it allows all actions to be
performed directly from the development environment.

Installing the Google Plugin for Eclipse

At the time of development of this paper, the current version of the development
environment is Eclipse Kepler (4.3.2). To install the Plugin, one has to perform the
following actions:

1. Choose from „Help” menu „Install New Software...”
2. In newly open window in field „Work with” is entered:
 https://dl.google.com/eclipse/plugin/4.3

The next activity is pressing the button „Add...” right to the field. Confirm with „OK” for the
new window. Field „Name” leave blank, as it will be filled later by page of Plugin.

3. After loading the table, press the icon to expand two headers next to "Google
Plugin for Eclipse" and "SDKs". Place a check mark in the boxes with the following
elements: "Google Plugin for Eclipse 4.3" and "Google App Engine Java SDK". The user
has to ensure that a checkbox next to "Contact all update sites during install to find
required software" is selected. Press the "Next>" and follow the instructions on the
installation.

4. When the installation is complete, the working environment Eclipse will prompt to
reboot. After restarting the environment, new additions will be active and available.

Creating a Java App Engine project

Google has chosen Java Servlet [5] technology to be one of its cloud platforms service.
This determines the way the application will interact with the server.
To create a new project from "File" menu select "New / Other ...". From the opened dialog
choose the section "Google" and then "Web Application Project". After pressing the
"Next>" a dialog is opened to define a new project. As name of the project can be set
"ChatRoom" and for the package name "com.cc.chatroom". Additional settings will be:
deselect a "Use Google Web Toolkit" and select "Use Google App Engine". After clicking
the "Finish" button the structure of the sample project is automatically created. Main
content is divided in two directories:

src – contains application code files;
war – contains the compiled application in WAR format (WAR archive is not

supported)
The newly created application can be launched from the menu "Run" by selecting "Debug
As> Web Application", and it can be accessed via a standard browser at:

http://localhost:8888/

Authentication of users

By creating a standard project, a servlet is also created with the name of the project, which
is registered in the "web.xml" file. In this example it is in "ChatRoomServlet.java". This is a

3

class that inherits "javax.servlet.http.HttpServlet" class. Initially, the effects of this class are
to handle a GET request and display as text message "Hello, world".
This servlet will be modified so that a POST request is forwarding to be processed by
function processing GET request.
Authenticating the users is a major task for any application and can be very complex.
When creating applications for Google App Engine, it is possible to use the authentication
provided by Google. This means that instead of writing a code in an application that is
being developed to take care of the maintenance of users, this task is given to Google. For
this purpose, if a user wants to work with the application, it must be registered first and
have a valid Google account. Code that makes authentication in this case is rather short:

public class ChatRoomServlet extends HttpServlet {

 public void doPost(HttpServletRequest req, HttpServletResponse resp)

 throws IOException {

 doGet(req, resp);

 }

 public void doGet(HttpServletRequest req, HttpServletResponse resp)

 throws IOException {

 UserService userService = UserServiceFactory.getUserService();

 User user = userService.getCurrentUser();

 if (user != null) {

 resp.getWriter().println(

 "<p>Welcome " + user.getNickname()

 + ". To sign out click " + "<a href="

 + userService.createLogoutURL(req.getRequestURI())

 + ">here.</p>");

 } else {

 resp.getWriter().println(

 "<p>Welcome to ChatRoom. You can sign in from <a href="

 + userService.createLoginURL(req.getRequestURI())

 + ">here</p>");

 }

 }

}

UserService is interface that gives access to the main tasks of identifying the user.
getCurrentUser() returns an object for current user. If this object is null, this means

that there is no currently registered user. With userService.createLoginURL(

req.getRequestURI()) browser is redirected to Google page for user authentication.

When using a local server for development and testing, it is possible cases when Internet
is not available and in the cases the browser is redirected instead of Google login form to a
standard form where the authentication is always possible only with e-mail address. The
parameter that has been passed to the function createLoginURL, is an address which

will be used to redirect the browser after successful authentication. For logout it is used
other function createLogoutURL, and the parameter again is return address.

The logic of demonstrating code is following:

• if there is currently authenticated user it is displayed the message "Welcome"
followed by the name of the user. Then an unsubscribe link is present;

• if there is no currently authenticated user it is displayed "Welcome to
ChatRoom", following by the link to authenticate the user;

4

Dynamic content
Using servlets allows generation of dynamic content in pages, but unfortunately when
there is the need to generate more complex pages, the task can become quite difficult. To
solve this problem, multiple template systems for Java are developed. These are systems
that combine static HTML content and dynamically changing fragments. Thus, complex
layouts on a page can be generated separately and independently, even using assistive
environments and tools, and specific content can be added at the designated places. In
this paper, we will look at JavaServer Pages (JSPs) [1], as one of the most popular
systems, at the same time supported by Google App Engine.
By default, all files with the extension .jsp from the war directory and all subdirectories
except WEB-INF are mapped to the corresponding URLs.
To use JSPs, Eclipse must be configured to use the JDK, not the JRE. This can be done
from the menu: Window > Preferences > Java > Installed JREs.
Similar result to that obtained from already discussed servlet can be obtained from a JSP
template. This is a file that can be placed in the war directory and that can be given the
name index.jsp. Although the file is named index.jsp, this does not mean that it will be
loaded by default. To become this true a modification is required for the configuration file
web.xml located in the war / WEB-INF directory. It is needed to update the contents of the
tag <welcome-file>:

 <welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 </welcome-file-list>

The main fragment of code that performs authentication of users using JSP templates is
as follows:

...

<body>

 <%

 UserService userService = UserServiceFactory.getUserService();

 User user = userService.getCurrentUser();

 if (user != null) {

 %>

 <p>Welcome <%=escapeHtml3(user.getNickname()) %>. To sign out click <a

href="

<%=userService.createLogoutURL(request.getRequestURI())%>">here.</p>

 <%

 } else {

 %>

 <p>Welcome to ChatRoom. You can sign in from <a href="

 <%=userService.createLoginURL(request.getRequestURI())%>">here.</p>

 <%

 }

 %>

</body>

...

An important thing that needs to be addressed is the output of the text on the screen of the
browser. In this case, it is the user's name. If it works as demonstrated in servlet
user.getNickname(), this can lead to security problems. The reason for this is that if a

malicious user as its name defines some HTML code, it will be put in the output, and will
be interpreted by the browser. To avoid security problems of this nature, it is

5

recommended that all strings are escaped, which will be displayed to the screen and the
application does not have control of their content. There is a standard library Apache -
Commons Lang [7], which has a similar function. To use this feature in application, one
has to place the library file in war\WEB-INF\lib directory and include the library that
contains the function with following line:

%@page import=" org.apache.commons.lang3.StringEscapeUtils. escapeHtml3"%

The function is named escapeHtml3, and by using it, all strings are converted so that

they are displayed as text in the browser.
As a result, it is possible to display any text to the browser, even one that contains some
HTML, and it will be transformed into the escape sequence:

<%=escapeHtml3(user.getNickname()) %>

Another important part of the web.xml file is the association of servlet to a physical
address. If we define a new servlet in the application this does not automatically make it
visible and accessible to the client browser. In order to make this servlet accessible via
some address and to receive GET or POST requests, this servlet needs to be specified in
the configuration file web.xml. Fowling example will demonstrate how this can be done for
servlet that will receive messages sent to the server by users. Servlet will be defined in the
file SendMessageServlet.java.

 <servlet>

 <servlet-name>send</servlet-name>

 <servlet-class>com.cc.chatroom.SendMessageServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>send</servlet-name>

 <url-pattern>/send</url-pattern>

 </servlet-mapping>

The first section <servlet> describes the name and which class will process

requests.
The second section <servlet-mapping> specifies the address where the servlet will

be available.
So, define and describe servlet will be activated from a HTML form which will be

placed in the index.jsp:

 <form action="/send" method="post" id=frm>

 <pre id="output" style=

 "height: 300px; width: 600px; overflow: auto; border: 1px solid

black;">

 </pre>

 <input id="input" name="input" type="text" maxlength=300

 style="width: 600px"/>

 <input type="submit" value="Send"/>

 <script type="text/javascript">

 document.forms.frm.input.focus();

 </script>

 </form>

The method that has been used to send a request to servlet is POST and action="/send"
set the address where the servlet is available.

mailto:%25@page%20import=%22%20org.apache.commons.lang3.StringEscapeUtils.%20escapeHtml3%22%25

6

Data handling

The cloud infrastructure is a quite different architecture from normal PCs and even
servers. If an application communicates with one node from the cloud infrastructure for
some time, then the next requests can be redirected to another node. Therefore, it is
difficult to determine exactly where to save the data so that they are available for next call.
In addition, there are actions for backup the data in case of failure so that they can be
restored in such cases.
To ignore all the details related to the storage and maintenance of data, Google App
Engine offers a service called Datastore. This is a set of functions enabling storing and
retrieving the data using simple API.
In the Datastore, a recorded unit of information is called entity. Each entity consists of a
key and a value. The key must be unique, and it is used to identify the entity. The value
can be any object.
When the entity has been saved in the Datastore, this leads to number of actions related
to the sharing of data between data centers, backup, and many other activities related to
cloud architecture, all of which is hidden from the developer.
To save a message which had been sent to chat room, it is necessary to modify the servlet
SendMessageServlet like this:

String content = req.getParameter("input");

Date date = new Date();

Entity message = new Entity("Message");

message.setProperty("user", user);

message.setProperty("timestamp", date);

message.setProperty("text", content);

DatastoreService datastore =DatastoreServiceFactory.getDatastoreService();

datastore.put(message);

resp.sendRedirect("/index.jsp");

• the first row retrieve entered text by the user;

• the second line creates an object representing the current system time which
is used as a characteristic of the message;

• the third line creates an item that will be recorded in the Datastore. This
element is of type "Message", and don't contain a key value. After saving the
item a unique key value will be assigned;

• each element can have any number of properties. In describe case these
three properties are: user, timestamp of message and the message itself (lines
4 to 6);

• actual recording is on row number eight: datastore.put(message);

• the final task is to redirect the browser to the default template;

Retrieving of data is related to the execution of the following sequence:

• creating an object which define the search query;

• create a list of items corresponding to the request;

In the code that looks like this:
DatastoreService datastore = DatastoreServiceFactory

 .getDatastoreService();

Query query = new Query("Message").addSort("timestamp",

 Query.SortDirection.ASCENDING);

7

Iterable<Entity> messages = datastore.prepare(query).asIterable();

Object query retrieves all elements of type "Message", using the characteristic

"timestamp" to perform sorting.
messages is an object containing all the elements meeting the request.

Access to individual fields can be done as follows:

 for (Entity message : messages) {

 ...

 ...escapeHtml3(message.getProperty("text").toString())...

 ...

 }

Again, it should be kept in mind security, by simply using the function to convert special
characters, if any, in the entered text.
Sending a message is done by submitting the page and passing the control to the servlet
processing this request. Receiving information from the server side is more complicated. If
this is done again with submit this can lead to loss of Writer current message. It is
therefore necessary to use an asynchronous request to the server – Ajax [4]. In this case,
the background will ask a server for current messages from the chat room. After receiving
the response, all messages will be recorded in the appropriate controls. This whole
concept is implemented using JavaScript as follows:

 var req = null;

 if (window.XMLHttpRequest) {

 req = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 req = new ActiveXObject("Microsoft.XMLHTTP");

 }

 function processRequest() {

 if (req.readyState == 4 && req.status == 200) {

 var message = req.responseText;

 if (message != null && message != "") {

 var outputElement = document.getElementById("output");

 outputElement.innerHTML = message;

 outputElement.scrollTop = outputElement.scrollHeight;

 }

 }

 }

 function doReceive() {

 req.onreadystatechange = processRequest;

 req.open("POST", "getMessage", true);

 req.setRequestHeader("Content-type", "application/x-www-form-

urlencoded");

 req.send();

 }

req variable is an object serving to organize asynchronous communication.

doReceive is a function that specifies which function will handle the response to the

query, specifies the servlet which will handle the queries and what is the type of request,
and makes the actual call. When a response is receipt, the function processRequest is

activated to handle this particular answer. After checks for correctness of response and
data the response is written as text in graphic control which contains all posted messages.

8

Deploying the application

The last step of creating a cloud application is to be deployed in cloud infrastructure so it
can be available over the Internet. To do so, an application ID has to be created. This
identifier can be setup from:

https://appengine.google.com/

To do this, you have to own a valid account for Google. After loading the portal for
administrating the applications, the button "Create an Application" has to be pressed. The
registered identifier is using to access the application from the Internet. If a free version of
the domain is used and assume that the identifier is chatroom, then the application can be
accesses from:

http://chatroom.appspot.com/

Deploying the finished application can be done from an Eclipse environment. For this
purpose, it is necessary to edit the file appengine-web.xml and set the element
<application> with registered identifier for this case chatroom. Actual deployment can

be done from the toolbar by pressing the Google button and then the option "Deploy to
App Engine ...". There are specifying issues for Google account and some options about
loaded application into cloud infrastructure.

Conclusion

The process of creating and deploying a cloud Application for Google App Engine largely
resembles the same process for standard Java WEB application, although there are some
slight differences. The main difference is that cloud applications do not have a standard
relational database. Cloud provides a technology for storing data that can be defined as an
objective database. This, despite the initial stress in developers, is pretty powerful
mechanism for storing data that requires some readjustment in thinking and structuring of
an application.

References:
[1] Hans Bergsten; Java Server Pages (December 2000); Publisher: O'Reilly Media
[2] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick; Eclipse Modeling

Framework: A Developer's Guide (August 2003); Publisher: Addison-Wesley Professional
[3] David Flanagan; Java in a Nutshell (March 2005); Publisher: O'Reilly Media
[4] Jesse James Garrett; Ajax: A New Approach to Web Applications (February 2005)
[5] Jason Hunter; Java Servlet Programming (November 1998); Publisher: O'Reilly

Media
[6] Danko Naydenov, Modern paradigm and trend in Cloud Computing (Jun 2012);

Informatics in the scientific knowledge 2012
[7] http://commons.apache.org/lang/

Danko Naydenov
Eurorisk Systems Ltd.
31, General Kiselov Str., 9002 Varna, Bulgaria
Е-mail: sky at eurorisksystems dot com

