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Abstract 

Shipping markets are typically volatile in nature, manifested by the dynamics of their freight rates. 

According to the shipowners’ risk propensity, volatility related decisions vary from what kind of 

contract (time/voyage charter) to whether to entry/exit the business. After a sharp drop at the end of 

2008, a discussion about appropriate risk management concepts and statistical tools is a need. Due 

to heavy investments made in the business any additional information regarding the future direction 

of the market volatility is of the utmost importance. The ambition of this article is exactly the same: 

to study fluctuations of the Baltic Panamax route 2A and the Baltic Panamax route 3A, by hybrid 

model of wavelets and neural networks, a new analysis tools for the shipping economics. The wavelet 

multiscale decomposition of time series would reveal volatility dynamics across different time 

frequencies and uncovered patterns will be used by neural networks for prediction. 
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Wavelet and Neural Network Model for Prediction of 
Dry Bulk Shipping Indices 

Introduction 

 

In shipping, while planning their investment policies, agents should decide among 

different risk/gain ratios: how to manage risk in the light of short-term or long-term 

contracts in order to reduce exposure to the market highs and lows or how the 

portfolio of contractual agreements, either in physical market or in the paper (of 

shipping derivatives) to be structured. According to the shipowners’ risk propensity, 

decisions may vary but the volatility dynamics and volatility correlations within a 

portfolio of assets or contracts remain a starting point1. However, after such events, 

as a sharp drop in freight levels from the end of 2008, a discussion about appropriate 

risk management concepts and statistical tools is a need. Due to heavy investments 

made in the business any additional information regarding the future direction of the 

market volatility is of the utmost importance.The ambition of this article is exactly the 

same: to study fluctuations of the Baltic Panamax route 2A and the Baltic Panamax 

route 3A, by hybrid model of wavelets and neural networks, a new analysis tools for 

the shipping economics. Following this introduction, we devote Section 2 to the 

relationship of the paper with existing literature, next sections address the 

advantages afforded by wavelets and neural networks. The paper continues with the 

examination of the proposed technique and the last two sections conclude the article 

with the investigation of the results and proposal for further developments, based on 

the novelty of the method.  

 

 

 

                                                 
1 Note should be inserted, having in mind the amount of critical voices towards using David X. Li's 
Gaussian copula (which defines the relationship between two assets/variables), claiming that it never 
be captured by a single scalar quantity, for example in Salmon F. “Recipe for Disaster: The Formula 
That Killed Wall Street.” Wired magazine 02/23/2009 



 

 

Volatility. Models 

 

In shipping economics literature, Kavussanos(1996a) examines freight rates and 

ship price volatilities, making comparison over different ship sizes. His findings 

acknowledge that smaller class vessels, due to their commercial flexibility, attract 

less volatility compared to bigger classes. The other pattern found is “…clear 

tendency for volatility clustering…” over individual dry shipping markets. This feature, 

as firstly suggested in (Mandelbrot, 1963), means that “large changes tend to be 

followed by large changes, of either sign, and small changes tend to be followed by 

small changes”. Consequently, returns are not independent across time and on the 

other hand there is nolinear autocorrelation. The latter suggests those series are 

heteroskedastic, and are preferably modeled by most used variant of the 

autoregressive conditional heteroskedastic models: called GARCH, after generalized 

ARCH (Bollerslev, T., 1986). In (Kavussanos, M., 1996), GARCH models are used to 

present volatility in shipping markets, as a time varying process. Fractionally 

Integrated GARCH (FIGARCH) model, as a long-memory model for absolute returns 

can be found in (Nomikos et al., 2009), it is pointed out as alternative to GARCH in 

specification of volatility dynamics of weekly spot freight rates for the dry Capesize 

market, as well for VLCC, Suezmax and Aframax tanker markets. Critics about the 

GARCH models as conventional parametric methods can be found in (Taleb, 2007), 

who advocate that stochastic volatility and GARCH/Extreme Value Theory are 

approaches that do not solve the problem of confidence about small probability of 

events that are not in the sample of the past realizations. Volatility swings, as those 

in dry freight bulk market, ARCH/GARCH methodology try to explain, as in (Greene, 

W. H., 2002: 238), like “…model errors, which appear in clusters…”. This problem, as 

(Ramsey, J. B., 1999) asserts, can be tackled by wavelets, with approximation of 

long memory processes, without knowledge of their underlying function. (Gencay, R. 

et al., 2001) have argued that wavelets can decorrelate non-stationary time series, 

like financial ones, where market participants’ interactions occur at different time 

scales. Different specifications of GARCH models are investigated in shipping: 

threshold GARCH (TGARCH) and exponential GARCH (EGARH) in (Alizadeh Amir 

H., 2009) try to reveal possible asymmetric impact of positive and negative shocks of 

volatility of VLCC TD3 and Capesize C4 spot rates. The review of the above models 

can be found in authors’ words in pp 92-93 “…three estimated volatilies for VLCC 
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TD3 and Capesize C4 are very close, with minor differences due to the structure of 

the models…”. As in each of the time-varying variance approaches, fully examined in 

(Alizadeh Amir H., 2009: pp. 80-106), we produce univariate forecast of future 

volatility by a hybrid approach. In order to align our results with the benchmark 

model, we compare it to GARCH (1,1)2.  

The multi-resolution analysis. The pyramid algorithm. The discrete 

wavelet transformation.  

 

The idea of multi-resolution analysis, used in the paper, is to present time-series as 

sum of smooth and detail coefficients. If the initial signal is 2( )x t L  and an initial 

resolution is J, the presentation in (Daubechies, I., 1982) (Mallat, S. G., 1999) follows 

in (1): 

 

     tdtctx n,J
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where  t  and )t(  denote respectively the wavelet and the scaling function. The 

details coefficients n,jd  are presented in (2) and the scaling coefficients n,jc  are 

defined in (3): 
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From the output of the corresponding filters at resolution j, based on (2) and (3), the 

coefficients at finer level of resolution )1( j  of a scaling filter lg  (4) and the 

coefficients of a wavelet filter lh  (5) are generated by downsampling by a factor of 

two. The computation, in the opposite direction, of coefficients from those at the 

coarser level of resolution is according to (6). 

                                                 
2 For addressing GARCH properties, one can consult Alizadeh and Nomikos (2009) pp.103-105 
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The equations (4) - (6) reveal a pyramid algorithm (Mallat, S. G., 1999) or discrete 

wavelet transform (DWT). The DWT suffers from some limitations (Percival, D. B., A. 

T. Walden, 2000): 

1)  it is not a time (shift)-invariant transform: shifting ( )x t  by some amount does not 

ensure that the corresponding wavelet and scale coefficients are translated by 

the same amount;          

2)  dyadic length requirements, induced by the downsampling when computing the 

transform. 

In response to that, the maximum overlap discrete wavelet transform (MODWT), also 

known as the “non-decimated wavelet transform” or the “stationary DWT” or the 

“translation invariant DWT” has been developed. A thorough discussion of it could be 

found in (Gencay, R. et al., 2001) (Percival, D. B., A. T. Walden, 2000). 

As mentioned, MODWT gives up the downsampling (decimation) at each scale3. 

Contrary to the DWT, in MODWT, down-sampling of the signal is changed with up-

sampling at each level of decomposition, which makes MODWT shift-invariant and 

as clearly described in (Crowley, P., 2005: 32) ”…In contrast to the DWT the MODWT 

simply skips the downsampling after filtering the data, and everything else described 

in the section on MRDs using DWTs above follows through, including the energy 

(variance) preserving property and the ability to reconstruct the data using MRA with 

an inverse MODWT…” 

 

 

                                                 
3 However, for time series of dyadic length, it may be subsampled and rescaled to obtain an orthonormal DWT. 
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The Maximal Overlap Discrete Wavelet Transform 

 

As in (Percival, D. B., A. T. Walden, 2000), the wavelet filter must satisfy the following 

properties: 
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The scaling filter  lg~  must answer conditions (9), where L  denotes the length 

of the wavelet filter 
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Intuitively, (7) means that the average value of the wavelet in the time domain must 

be zero and therefore it must be oscillatory. 

The MODWT pyramid algorithm, where the wavelet coefficients   M

njd , and the 

scaling coefficients   M

njc ,  are generated, using the filters  2/2/,,

~
jljlj hh   and 

 2/2/,,
~

jljlj hg   is presented in (10): 
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In (10) M stands for MODWT and N denotes the length of the time series to be 

analyzed. Using the inverse pyramid algorithm proposed in (Percival, D. B., A. T. 

Walden, 2000), the original time series can be recovered from (11): 
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Figure 1.x: Maximal Overlap Discrete Wavelet Transform 

 

  

Neural network processing 

 

First, the initial time series is decomposed in different wavelet time frequencies, then 

every frequency is predicted as an independent time series and finally the predicted 

time frequencies are composed in order to obtain the final predicted time series – 

Fig.1. The mathematical model of the neural network is an adjustable structure that 

works in two main stages (Fausett, L., 1994) (Tang, Z., P. A. Fishwick, 1993) (Fig. 2). 

 

Figure 2.: Wavelet decomposition of the initial time series, prediction of the separate sequences and 
reverse composition to the series with predicted values 
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Figure 3.: Neural network training and prediction 
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1) Training using the available historical data. Here the training examples are 

collected by usage of “sliding time window” (Zhang, G. P., 2004). The size of the 

window is usually estimated by different heuristic methods. Here the 

autocorrelation function is analyzed for this purpose (Chatfield, C., 1996). 

2) Prediction in a given time horizon. When the training completed the neural 

network is fed by the last values and it generates a prediction. In this sense the 

neural network works as a function that generate a prediction based on the 

previous known values: 

 

          ntx,,tx,tx,txftx  211      (12) 

 

Further a recursive prediction is applied until the desired horizon is reached. 

Every time frequency is considered as a time series that is individually pre-

processed (forward processing), predicted by a multilayer perceptron, and post-

processed (backward processing).The used technique of recursive prediction 

requires preliminary transformation of the data in order to be within the neural 

network activation function. This means that every predicted value is considered as a 

real one and used as a neural network input. The output predicted value is in the 

range of the activation function and therefore all input values must also be 

transformed to be into this range. The most commonly used activation function in the 

multilayer perceptrons is in the range of ]1,0[  or ]1,1[ . 

The problem of this transformation is eventual mismatch between the predicted and 

the training data. Let the whole time series before applying of the sliding window 

approach consists of n values (data used for training) and prediction is needed when 

the series length is kn   (current data) and the last k  of them contains a minimum 

or maximum that is below respectively above the minimum/maximum of the first n 

values. This situation is illustrated in Fig. 3, where the maximum value of the current 

data is different than this of the training data. If the training data is in the range 

max][min,  and it is transformed into ]1,1[ , after obtaining the next k values, the new 

range max][min, new  will be transformed into ]1,1[ , which means that the first n 

values will be transformed into unrecognizable for the neural network data, although 

they have been in the training set. 
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To overcome the problem, the data transformation is parametrized, where the 

starting point is the equation (13) , used for the ordinary data scaling: 

 

 
minsmaxs

minmax
minsx+min=y




        (13) 

 

where y is the transformed value; min  and max  are minimum and maximum values 

of the new range; mins  and maxs  are minimum and maximum of the initial data 

values; x  is the current value of the initial time series. These calculations may also 

be done as the following two steps: 

1) Scaling – transformation of the original data to be in the range of the activation 

function range; 

2) Shifting – the time series is shifted to be centered about Y axis. 

 

These steps can be done using parameters   and  , which define the scaling and 

shifting respectively: 

 

minsmaxs

minmax




          (14) 

 

  minsmin          (15) 

 

After performing these two steps the parameters   and   should not be changed 

any more. Thus, when they are already calculated, adding or removing values 

to/from the time series does not change the training data range. Using these 

parameters, the forward transformation is as follows: 

 

 x=y           (16) 

 

and the backward transformation is: 

 



y
=x           (17) 



 

 

 

Figure 4.: The turning up new data values makes the time series to be in a different range compared to 
the training data 

  

 

The information about the transformations applied to the time series should be kept 

together with the parameters   and  , which should also be used for the backward 

transformations to restore the range of the predicted values generated by the neural 

network using formula (5). Moreover, in order to minimize the probability the new k  

values to be out of the activation function range, the scaling is usually performed in 

]9.0,9.0[  instead of ]1,1[ . 

Sequence of transformations on time series 

 

The pre-processing of the data is done before the neural network training and 

prediction. After obtaining the predicted values backward transformations should be 

done. All transformations could be divided into groups according to their type: 

1) Transformations to make stationary time series; 

2) Scaling and translation; 

 

Note that the scaling of the time series within the range ]1,0[  or ]1,1[  could be done 

in different ways. For example, transformation of the original data within ]1,0[  when 

0)min( tx  and 1)max( tx  may change the autocorrelations. However, if the scaling 

is done by dividing each time series value tx  by )max( tx , the values will also be in 

the range ]1,0[ , but if 0)min( tx , then 0)min( ty . In this case the whole range ]1,0[  
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will not be used but the autocorrelations will be preserved. As it is known the 

autocorrelation is calculated as follows: 
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After dividing tx  by )max( tx  the following result is obtained: 
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The result is the same as in equation (18). As the sliding window size is estimated by 

analyzing sample autocorrelation function, the pre-processing of the initial time 

series should be precisely considered. 

Figure 5.x: Maximal Overlap Discrete Wavelet Transform and Prediction 

  

 

 

 



 

 

Implementation and Results 

 

To provide an example of wavelet decomposition, we consider P2A4 and P3A daily 

volatility series. The volatility tv  is measured by the absolute returns, tt rv  , where 

)log()log( 1 ttt ppr  is the first difference of log-transformed daily index values. 

From the plotted figures we see for both of the series, that exhibit low volatility 

behavior up to observations 2230 in P2A case and 2350 in the P3A plot. Since with 

MODWT, we are not limited to the dyadic sample size, we use all available data, 

respectively vectors of length of 2713, 2676 units. Having in mind the requirement 

that the depth of transform must answer to )(log 2 NJ  , where N is sample size, we 

choose to perform at 5J  (levels of decomposition meaning we are able to capture 

frequencies up to 25 = 32 days, near to the time charter contract periods (see the 

data table). The analysis uses the Haar wavelet, appropriate for describing of non-

stationary samples, as those at the end of investigated series, when volatility 

bumped. Dealing with undesirable boundary effects, we use the so called circular 

shifting (the shifting of data from an end of series to the start, in order to execute 

approximations). The wavelet scale (smooth) coefficients for both of the series, 

corresponding to low-frequency trends, obviously capture significant increase in 

volatility, around zones 2230-2450 (P2A) and 2350-2640 (P3A). On the other hand 

details at levels 3 to 5 (Fig. 4(c-e)) and details coefficients in Fig. 5(c-d), are quite 

descriptive themselves about volatility oscillations, suggesting that the trading 

horizon is around a month (recognizable cycles for frequency from 24 = 16 to 32 

days) for the Trans-Pacific round voyage (P3A) and within 32-64 days, allowing 

sufficient time for the market information to reflects the future freight levels. This is 

partly expected, as time-charters thought to be average of expected spot rates over 

the duration of the contracts. Comparing levels 3 for both routes (Fig.4e and Fig.5e) 

seems to confirm the assertion that the longer the duration of the contract, the 

smoother the rates, presented here by absence in P2A of such apparent fluctuations 

as in P3A (the shorter contract).  

                                                 
4 The raw data is provided to us by Freight Investor Services (UK), see Table 1 
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The volatility swing, started in mid 2008, is clearly presented over all levels of 

decompositions. The results show that the wavelet neural network approach better 

capture the movement directions compared to the GARCH(1,1), as the comparison 

uses the default GARCH(1,1) model for  prediction of the conditional standard 

deviations of the return series the particulars are shown in tables 2 and 3 show 

particulars of model parameters.  

On Fig. 6 – 7 for five-step-ahead prediction, WNN results move similarly to the real 

data, where the GARCH(1,1) method produces results near to a linear trend, 

documented by the root mean squared error values statistics, as well.  

 

Figure 6.: Wavelet decomposition of daily absolute returns of the P2A, presented as follows (a) original 
volatility series (b) scale coefficients (c)-(g) wavelet coefficients (details) of levels from 5 to 1, from top 
downward 

  

 

Figure 7.: Wavelet decomposition of daily absolute returns of the P2A, presented as follows (a) original 
volatility series (b) scale coefficients (c)-(g) wavelet coefficients (details) of levels from 5 to 1, from top 
downward 



 

 

 

Figure 8.: A Comparison of forecasting performance for five-step-ahead predictions generated by the 
WNN and GARCH(1,1) models for the Panamax Route 2A 
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Root mean squared error: 

• wavelet neural network method – 0,011862564 

• GARCH method – 0,015076109 

 

Figure 9.: A Comparison of forecasting performance for five-step-ahead predictions generated by the 
WNN and GARCH(1,1) models for the Panamax Route 3A 
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Root mean squared error: 

• wavelet neural network method – 0,019519453 

• GARCH method – 0,054190628 

 

Conclusion 

In this paper we have presented the theoretical framework of design of wavelet 

neural network model, which reveals good approximation of predicted volatility 

series. The success of the proposed algorithm resides on the wavelet ability to 

decompose original series to trend and local behaved series which serve as 

activation functions in neural network, learning algorithm. The local adaptiveness of 

wavelets allows them to study non-stationarities, like sudden ruptures and clusters. It 

gives useful insight into volatility dynamics. The wavelet multi-resolution analysis can 

motivate investigation of relationship between volatilities in different scales, related to 

the rate of flow of information amongst players with different investment horizons. If 

applied to implied volatility of derivative contracts, the proposed algorithm could be 

used as a tool in spot price discovery. 

 



 

 

References 

1. Alizadeh Amir H. and Nomikos Nikos K. Shipping derivatives and risk 

management in shipping. Palgrave Macmillan, 2009. 

2. Bollerslev, T. Generalised autoregressive conditional heteroskedastic. Journal of 

Econometrics, vol.31, 1986, pp. 307 – 327. 

3. Brockwell, P. J., R. A. Davis. Introduction to Time Series and Forecasting, second 

edition. Springer, 2002, p. 434. 

4. Chatfield, C. The analisys of time series. An introduction. Fifth edition. Chapman 

& Hall/CRC, ISBN-10: 0412716402, ISBN-13: 978-0412716409, 1996, p. 304. 

5. Crowley, P. An intuitive guide to wavelets for economists Bank of Finland 

Research Discussion Papers 1, 2005. 

6. Daubechies, I. Ten Lectures on Wavelets. Philadelphia, Pa, USA: SIAM, 1992.  

7. Engle, R. F. Autoregressive Conditional Heteroskedasticity with Estimates of the 

Variance of UK Inflation. Econometrica 50, 1982, pp. 987 – 1008. 

8. Fausett, L. Fundamentals of Neural Networks: Architectures, Algorithms, and 

Applications. Prentice-Hall, ISBN:0-13-334186-0, 1994, p. 461. 

9. Gencay, R. et al. An Introduction to Wavelets and Other Filtering Methods in 

Finance and Economics. Academic Press, San Diego, CA, USA, 2001. 

10. Greene, W. H. Econometric Analysis (5th ed.), Prentice-Hall, Englewood Cliffs, 

NJ, 2002. 

11. Kavussanos, M. Comparison of volatility in the dry-cargo ship-sector, Journal of 

Transport Economics and Policy 30, 1996, pp. 67–82. 

12. Kavussanos, M. Price risk modelling of different size vessels in the tanker 

industry, Logistics and Transportation Review 32, 1996, pp. 161 – 176. 

13. Mallat, S. G. Theory for multiresolution signal decomposition: the wavelet 

representation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 

11(7), 1999, pp. 674 – 693. 

14. Mandelbrot. The variation of certain speculative prices, Journal of Business, 

XXXVI, 1963, pp. 392 – 417. 

15. Nomikos et al. An Investigation into the Correct Specification for Volatility in the 

Shipping Freight Rate Markets. Presentation for IAME Conference, held in 

Copenhagen, 2009. 

16. Percival, D. B., A. T. Walden. Wavelet Methods for Time Series Analysis, 

Cambridge, Cambridge University Press, Chapter 5, 2000. 



 

18 

 

17. Ramsey, J. B. The contribution of wavelets to the analysis of economic and 

financial data. Philosophical Transactions of the Royal Society 357(1760), 1999, 

pp. 2593 – 2602. 

18. Taleb, N. N. Black Swans and the Domains of Statistics. The American 

Statistician, Vol. 61, No. 3, 2007. 

19. Tang, Z., P. A. Fishwick. Feed-forward Neural Nets as Models for Time Series 

Forecasting. ORSA Journal on Computing Vol. 5, No. 4, Fall 1993, pp. 374 – 385. 

20. Zhang, G. P. Neural Networks in Business Forecasting. Idea Group Publishing, 

ISBN: 1591401771, 2004, p. 296. 



 

 

Appendix 

 

Table 1: Baltic Exchange Information Services Ltd/ The Baltic P2A and P3a 

routes  

Sector Route 
Size (MT) 

 
Price Quotation 

Data period, 

presented in the 

survey 

P2A 

 

Panamax Route 

2A, 

Basis delivery 

Skaw/Gibraltar Far 

East, re-delivery 

Taiwan/Japan 

range, 60/65 days. 

Loading 15-20 

days ahead in the 

loading area3.75 

per cent total 

commission 

Baltic panamax 

74,000 mt dwt not 

over 7 years, max 

LOA 225, draft 

13.95, 14.0 knots. 

Cargo basis grain, 

ore, coal, or 

similar 

USD/Day 

31/12/1998 

To 

 

12/11/2009 

 

2715 data points 

P3A 

 

Panamax Route 

3A 

Transpacific round 

of 35/50 days 

either via Australia 

or Pacific; re-

delivery Japan-

South Korea 

range, 

Baltic panamax 

74,000 mt dwt not 

over 7 years, max 

LOA 225, draft 

13.95 

USD/Day 

25/2/1999 

 

To 

 

12/11/2009 

 

2678 data points 

 

Table 2:  GARCH(1,1) model  specification for P2A route         

                

Parameter Value Error Statistic 

C 0.00079652 0.0029442 0.2705 

K 2.3539e-006 2.4971e-005 0.0943 

GARCH(1) 0.99465 0.056268 17.6771 

ARCH(1) 0.0053464 0.016822 0.3178 
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Table 3:  GARCH(1,1) model  specification for P3A route     

                    

Parameter Value Error Statistic 

C 0.00080065 0.0033544 0.2387 

K 0.00012231 0.00012564 0.9735 

GARCH(1) 0.78751 0.16898 4.6603 

ARCH(1) 0.11998 0.090226 1.3297 

 

 


