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Autoregressive model order determination 
 

 

 
Abstract: Here investigation of some approaches for model order 

identification in the autoregressive model is presented for univariate 

time series prediction. The approaches are implemented in a software 

library used for the sake of financial predictions. The results for some 

real financial series using the considered alternative approaches are 

summarized and conclusions are presented for their applicability. 
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I. INTRODUCTION 

Time series prediction is important from both theoretical and 
practical point of view and it is applicable in financial, physical, 
social and many other fields. The prediction approaches can be 
separated into two main categories - univariate and multivariate. 
Each of them has their own characteristics and their usage 
depends to the specific problem that should be solved. The 
univariate prediction is the simpler one but in the same time it is 
not less important especially when there is a lack of information 
for the involved factors influencing the time series behavior into 
consideration. In this paper the univariate time series prediction 
is considered emphasizing to the model identification stage. The 
considered approaches are analyzed from practical point of view 
and implemented in a software library for time series prediction. 

The main steps in time series prediction according to the 
classical Box-Jenkins approach [1] are as follows. 

First of all the series is plotted and its characteristics are 
analyzed. If there is trend it should be removed by differencing 
or other pre-processing. Then the model order identification and 
parameters estimation are performed. 

A. Model identification 

In this stage the process supposed to represent the time series 
is identified as autoregressive or moving average or combination 
of both. In addition their orders are identified. In this paper only 
the autoregressive model is considered and thus this stage 
involves determination of the model order that is the number of 
the model parameters. Let suppose a discrete time series x is 
given 

x1, x2, … , xn    (1) 
 

Having an autoregressive model the i-th prediction can be 
calculated by: 

x̂i+1 = ϕixi + ϕi−1xi−1 + ⋯ + ϕi−kxi−k + ei+1 (2) 

 

where k is the model order, e is an error term with zero mean 
and ϕ are model parameters. 

The model order determination is based on identifying the 
best value of k according to a given criterion. Using (2) an 
arbitrary number of predictions can be iteratively generated for 
the historical period and compared to the available values x. The 

predictions could not be generated for the first k values of the 
series because there are not input values for the model. 

The model order identification is an issue often avoided in 
the literature and not deeply investigated and described. In the 
classical Box-Jenkins methodology the analysis of the 
autocorrelation function (ACF) and partial autocorrelation 
function (PACF) are used for this purpose [1] [6]. The goal is to 
find the point where they have not significant values and that 
point is considered as the model order. Roughly the significance 
level can be estimated as 

𝑛

√2
    (3) 

 

where n is the time series size. 

If a fixed approach is used for the next stage of parameters 
estimation the model order is the most important for the 
prediction quality. That is why in this paper the model order 
determination is emphasized investigating some new 
approaches. 

B. Parameters estimation 

When the model order k is determined the coefficients 

𝜙1, 𝜙2, … , 𝜙𝑘   (4) 
 

should be calculated by one of the known approaches. For 
example Yule-Walker equations [6] or ordinary least squares 
approach can be used. The aim is to find the best parameters 
according to the next stage which checks the chosen model to 
best fit the available data. 

C. Model checking 

One possible approach for model checking is to separate 
some part of the time series for parameters estimation and 
another part for error calculation. When the model order is 
determined and the parameters are estimated the predictions can 
be calculated for some future time horizon m: 

𝑥̂𝑛+1, 𝑥̂𝑛+2, … , 𝑥̂𝑛+𝑚    (5) 

 

applying (2) and if there are the real values available 

𝑥𝑛+1, 𝑥𝑛+2, … , 𝑥𝑛+𝑚    (6) 

 

the residuals can be calculated as 

 

𝑑 = ∑ (𝑥𝑖 − 𝑥̂𝑖)
2𝑚

𝑖=1    (7) 

 

Trying the model identification and parameters estimation 
stages for different model orders k a family of residuals dj are 
obtained and the smallest one determines the best model order. 
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Thus given that the autoregressive methodology is used in 
our investigation the steps above can be separated into two main 
stages: model identification and prediction. The former is based 
on historical values analysis and the latter uses the determined 
model from the first stage in order to generate the predictions by 
propagating the input values through the model 

II. IMPLEMENTED APPROACHES 

The approaches presented here are implemented as 
functionalities in a software library and imported in a real 
software application for the purpose of prediction of financial 
time series representing commodities, indices, etc. From 
practical point of view we found that the simpler models are 
almost always more useful and in the same time they produce 
practically usable results. The more complex models are based 
on a huge number of settings parameters most of which should 
be determined by an expert and often guessed based on the trial 
and error approach. The practical applications however should 
be strongly automated. The steps in which the implemented 
model works are presented below together with three different 
methods for model order identification which results are 
analyzed. 

A. Data pre-processing and post-processing 

In order to facilitate the prediction making the time series 
non-depending from its characteristics some pre-processing 
should be performed before the model building and post-
processing after the prediction [11]. Thus the series is 
transformed to stationary one by removing any additive or 
multiplicative trend as well as the increasing seasonal effect. In 
our case first a check is performed are there zero values in the 
series and if there are such the series is transformed by simple 
discrete differentiation: 

1−−= ttt xxy    (7) 

 

Otherwise, if there are not zero values, so called “performances” 
are calculated: 

1

1

−

−−
=

t

tt

t
x

xx
y   (8) 

 

Thus the series y is one value shorter than the original series. In 
fig. 1 the original and pre-processed series are shown with their 
trends. 
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Fig. 1. An original series with its trend shown up and the series after pre-

processing down 

After the prediction the reverse operation is performed by: 

0, == tyx tt
    (9) 

 

and 

0,1 += − tyyx ttt
  (10) 

 

if differences have been calculated or 

0,)1( 1 += − txyx ttt
  (11) 

 

if performances have been used. 

B. Model identification 

Given a time series the autoregressive model is based on 

the collecting of the model data as shown in fig. 2. 
There is a variety of predictive models based on this approach. 
In addition to the autoregressive based methods like AR, 
ARMA, ARIMA, SARIMA, ARMAX, SETAR [5] and so on, 
the neural networks predictive methods are also realized in this 
way [4] [7] [10] using the sliding window approach thus creating 
the input-output training vectors. 

 

Fig. 2. A time series and building of a simple autoregressive predictive model 

The number of the columns of A is determined by the model 
order identification stage. Given the model order the parameters 
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Φ are calculated by ordinary least squares method solving the 
following matrix equation: 

Φ = (ATA)−1ATb  (12) 

 

where b, A and Φ are as follows 
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  (13) 

Thus the approach for calculation of the parameters is 
considered as preliminary chosen and it is not analyzed here. In 
contrast the model order determination is not chosen to be only 
one and the following approaches are implemented. 

A. Analyzing the autocorrelation partial autocorrelation 

functions 

As in the classical Box-Jenkins procedure these functions are 
built for the time series and the point, in which they become 
smaller than a given significance level determines the model 
order. This approach is traditionally used in the 
autoregressive prediction. 

B. Brute force searching  

Using this approach predictions are done subsequently for 
the historical values by all possible model orders and the 
error is calculated according to one of the following criteria. 

• Trend brute force searching 

If there are n historical values x1…xn the linear trend La 
is built for them and it is extrapolated in the future time 
horizon m for which predictions will be performed. The 
future time horizon in our experiments is chosen to be 
equal to the historical series size n. After that for every 
possible model order k from mino to maxo the predictions 
xn+1…x2n are produced and the linear trend Lb is built for 
the series x1…x2n of the historical and the predicted 
values. The value k for which the Euclidean distance dt 
between the extrapolated La and Lb is minimal is chosen 
to be the model order. For maximal effectiveness in 
practical solution our investigation shows that mino and 

maxo should be chosen to be 
n

5
 and  

2n

5
 respectively, 

where n in the series size, because almost all model 
orders are determined to be in this range. 

• Variation brute force searching.  

In this approach the variation Sa is calculated for the 
historical values x1…xn. For every possible model order 
k from mino to maxo the series is predicted by producing 
xn+1…x2n and the variation Sb is calculated for xn+1…x2n. 
The value k for which the Euclidean distance dv=|Sa - Sf| 
between the historical and predicted values variation is 
minimal is chosen to be the model order. 

• Trend and variation brute force searching 

Here the combination between the previous two 
approaches is used. Both dt and dv are calculated 
together with their sum ds=dt+dv for every model order 
k from mino to maxo. The value k for which ds is 
minimal is chosen to be the model order. Here different 
weights can be applied to both dt and dv in the 
calculation of ds. 

The distance in these calculations could also be some other, 
for example Mahalanobis, other Minkowski measure, R 
(Pearson correlation) squared or adjusted R squared, etc. [2] [3] 
[8] [9] 

All these approaches are investigated for time series with 
different characteristics and the results are summarized in table 
1 where the average mean squared errors for all series are shown. 

TABLE I.  MODEL ORDER DETERMINATION APPROACHES 

Approach Average error (%) 

Variation 21.25 

PACF 24.25 

Trend 27.00 

Trend and Variation 27.75 

 

The time series are discrete with daily observations of real 
financial data for 255 business days. The first 205 values are 
used to apply the presented approaches for model order 
determination and last 50 values are compared with the 
predictions generated by the determined model order. 

In fig. 3 examples of predictions with confidence levels are 
shown for series representing aluminum and silver prices in a 
practical software solution. The series is shown with red line, 
prediction with green and the upper and lower confidence 
bounds are shown with yellow and blue color respectively. 

The collected real series does not contain all values because 
they represent different indicators. That is why some of them 
should be interpolated before the preprocessing stage. In order 
to preserve their characteristics like mean and variation the 
interpolation is performed by Brownian bridge [12]. 
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Fig. 3. Example predictions for Aluminium and Silver 

III. CONCLUSIONS AND FUTURE WORK 

The summary data in table 1 shows that the variation brute 
force model order searching produces best results. However 
taking into account that it is a brute force method it works slow 
executing all modeling stages.  

The predictions are shown in red color and their moving 
average smoothing is shown in blue color. The moving averages 
together with the confidence lines are the usable data in the 
practical usage. All predictions shown are by variation brute 
force searching of the model order. It is obvious that the 
predicted series also adheres to the main trend. This effect is 
caused by the pre-processing and post-processing of the time 
series. The prediction is done to the processed series that 
preserves its real trend. 

According to our investigations unfortunately it is not 
possible to apply any optimization approach to find the best 
model order because there is not any dependence of the 
prediction error by the model order. In fig. 4 – fig.6 examples of 
prediction of different series types are shown by using the 
prototype realized in Java. 

 

Fig. 4. Prediction of a swap curve 

 

 

Fig. 5. Prediction of an IB Rate curve 

 

 

Fig. 6. Prediction of a money market series 

 

 

 

Fig. 7. Prediction of an index series 
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Fig. 8. Prediction of an index 

It is also important that the series type is not considered. If 
the predicted values go below zero correction is not made 
though this may not matter for the series. For example if a 
commodity price is predicted to be negative this is not corrected. 
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