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Autoregressive model order determination

Abstract: Here investigation of some approaches for model order
identification in the autoregressive model is presented for univariate
time series prediction. The approaches are implemented in a software
library used for the sake of financial predictions. The results for some
real financial series using the considered alternative approaches are
summarized and conclusions are presented for their applicability.

Keywords: Autoregressive model; Model order identification;
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. INTRODUCTION

Time series prediction is important from both theoretical and
practical point of view and it is applicable in financial, physical,
social and many other fields. The prediction approaches can be
separated into two main categories - univariate and multivariate.
Each of them has their own characteristics and their usage
depends to the specific problem that should be solved. The
univariate prediction is the simpler one but in the same time it is
not less important especially when there is a lack of information
for the involved factors influencing the time series behavior into
consideration. In this paper the univariate time series prediction
is considered emphasizing to the model identification stage. The
considered approaches are analyzed from practical point of view
and implemented in a software library for time series prediction.

The main steps in time series prediction according to the
classical Box-Jenkins approach [1] are as follows.

First of all the series is plotted and its characteristics are
analyzed. If there is trend it should be removed by differencing
or other pre-processing. Then the model order identification and
parameters estimation are performed.

A. Model identification

In this stage the process supposed to represent the time series
is identified as autoregressive or moving average or combination
of both. In addition their orders are identified. In this paper only
the autoregressive model is considered and thus this stage
involves determination of the model order that is the number of
the model parameters. Let suppose a discrete time series X is
given

X1, X2, -, Xn (D

Having an autoregressive model the i-th prediction can be
calculated by:

Riv1 = Oixj + dio1Xiog + -+ GikXi—k + €ip1 ()

where K is the model order, e is an error term with zero mean
and ¢ are model parameters.

The model order determination is based on identifying the
best value of k according to a given criterion. Using (2) an
arbitrary number of predictions can be iteratively generated for
the historical period and compared to the available values x. The
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predictions could not be generated for the first k values of the
series because there are not input values for the model.

The model order identification is an issue often avoided in
the literature and not deeply investigated and described. In the
classical Box-Jenkins methodology the analysis of the
autocorrelation function (ACF) and partial autocorrelation
function (PACF) are used for this purpose [1] [6]. The goal is to
find the point where they have not significant values and that
point is considered as the model order. Roughly the significance
level can be estimated as
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where n is the time series size.

If a fixed approach is used for the next stage of parameters
estimation the model order is the most important for the
prediction quality. That is why in this paper the model order
determination is emphasized investigating some new
approaches.

B. Parameters estimation
When the model order Kk is determined the coefficients

b1, P20 - P (4)

should be calculated by one of the known approaches. For
example Yule-Walker equations [6] or ordinary least squares
approach can be used. The aim is to find the best parameters
according to the next stage which checks the chosen model to
best fit the available data.

C. Model checking

One possible approach for model checking is to separate
some part of the time series for parameters estimation and
another part for error calculation. When the model order is
determined and the parameters are estimated the predictions can
be calculated for some future time horizon m:

£n+1'fn+2: ---:£n+m (5)

applying (2) and if there are the real values available

Xn+1: Xn42s = Xn4m (6)

the residuals can be calculated as
d= X700 —%)* (7)

Trying the model identification and parameters estimation
stages for different model orders k a family of residuals dj are
obtained and the smallest one determines the best model order.



Thus given that the autoregressive methodology is used in
our investigation the steps above can be separated into two main
stages: model identification and prediction. The former is based
on historical values analysis and the latter uses the determined
model from the first stage in order to generate the predictions by
propagating the input values through the model

Il. IMPLEMENTED APPROACHES

The approaches presented here are implemented as
functionalities in a software library and imported in a real
software application for the purpose of prediction of financial
time series representing commodities, indices, etc. From
practical point of view we found that the simpler models are
almost always more useful and in the same time they produce
practically usable results. The more complex models are based
on a huge number of settings parameters most of which should
be determined by an expert and often guessed based on the trial
and error approach. The practical applications however should
be strongly automated. The steps in which the implemented
model works are presented below together with three different
methods for model order identification which results are
analyzed.

A. Data pre-processing and post-processing

In order to facilitate the prediction making the time series
non-depending from its characteristics some pre-processing
should be performed before the model building and post-
processing after the prediction [11]. Thus the series is
transformed to stationary one by removing any additive or
multiplicative trend as well as the increasing seasonal effect. In
our case first a check is performed are there zero values in the
series and if there are such the series is transformed by simple
discrete differentiation:

Y =X =X (7

Otherwise, if there are not zero values, so called “performances”
are calculated:
X — X4 (8)

Y= X

t-1

Thus the series y is one value shorter than the original series. In
fig. 1 the original and pre-processed series are shown with their
trends.
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Fig. 1. An original series with its trend shown up and the series after pre-
processing down

After the prediction the reverse operation is performed by:
X, =Y,t=0 )

and

X =Y+ Y, t>0 (10)

if differences have been calculated or
X, = (Y, DX, t>0 (11)

if performances have been used.

B. Model identification

Given a time series the autoregressive model is based on
the collecting of the model data as shown in fig. 2.
There is a variety of predictive models based on this approach.
In addition to the autoregressive based methods like AR,
ARMA, ARIMA, SARIMA, ARMAX, SETAR [5] and so on,
the neural networks predictive methods are also realized in this
way [4] [7] [10] using the sliding window approach thus creating
the input-output training vectors.
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Fig. 2. Atime series and building of a simple autoregressive predictive model

The number of the columns of A is determined by the model
order identification stage. Given the model order the parameters



@ are calculated by ordinary least squares method solving the
following matrix equation:

® = (ATA)"1ATb (12)

where b, A and ® are as follows
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Thus the approach for calculation of the parameters is
considered as preliminary chosen and it is not analyzed here. In
contrast the model order determination is not chosen to be only
one and the following approaches are implemented.

A. Analyzing the autocorrelation partial autocorrelation
functions

As in the classical Box-Jenkins procedure these functions are
built for the time series and the point, in which they become
smaller than a given significance level determines the model
order. This approach is traditionally used in the
autoregressive prediction.

B. Brute force searching

Using this approach predictions are done subsequently for
the historical values by all possible model orders and the
error is calculated according to one of the following criteria.

e Trend brute force searching

If there are n historical values X;...x, the linear trend La
is built for them and it is extrapolated in the future time
horizon m for which predictions will be performed. The
future time horizon in our experiments is chosen to be
equal to the historical series size n. After that for every
possible model order k from min, to max, the predictions
Xn+1...X2n are produced and the linear trend Ly, is built for
the series Xi...xon Of the historical and the predicted
values. The value k for which the Euclidean distance d;
between the extrapolated L, and Ly, is minimal is chosen
to be the model order. For maximal effectiveness in
practical solution our investigation shows that min, and

maX, should be chosen to be g and z?n respectively,

where n in the series size, because almost all model
orders are determined to be in this range.

e Variation brute force searching.

In this approach the variation S, is calculated for the
historical values x;...xn. For every possible model order
k from min, to max, the series is predicted by producing
Xn+1...X2n @nd the variation Sy, is calculated for Xq+1...X2n.
The value k for which the Euclidean distance dy=|Sa - S|
between the historical and predicted values variation is
minimal is chosen to be the model order.

e Trend and variation brute force searching
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Here the combination between the previous two
approaches is used. Both d: and dy are calculated
together with their sum ds=di+dy for every model order
k from min, to max,. The value k for which ds is
minimal is chosen to be the model order. Here different
weights can be applied to both di and dy in the
calculation of ds.

The distance in these calculations could also be some other,
for example Mahalanobis, other Minkowski measure, R
(Pearson correlation) squared or adjusted R squared, etc. [2] [3]

(8] [9]

All these approaches are investigated for time series with
different characteristics and the results are summarized in table
1 where the average mean squared errors for all series are shown.

TABLE I MODEL ORDER DETERMINATION APPROACHES
Approach Average error (%)

Variation 21.25

PACF 24.25

Trend 27.00

Trend and Variation 27.75

The time series are discrete with daily observations of real
financial data for 255 business days. The first 205 values are
used to apply the presented approaches for model order
determination and last 50 values are compared with the
predictions generated by the determined model order.

In fig. 3 examples of predictions with confidence levels are
shown for series representing aluminum and silver prices in a
practical software solution. The series is shown with red line,
prediction with green and the upper and lower confidence
bounds are shown with yellow and blue color respectively.

The collected real series does not contain all values because
they represent different indicators. That is why some of them
should be interpolated before the preprocessing stage. In order
to preserve their characteristics like mean and variation the
interpolation is performed by Brownian bridge [12].
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Fig. 3. Example predictions for Aluminium and Silver

I1l.  CONCLUSIONS AND FUTURE WORK

The summary data in table 1 shows that the variation brute
force model order searching produces best results. However
taking into account that it is a brute force method it works slow
executing all modeling stages.

The predictions are shown in red color and their moving
average smoothing is shown in blue color. The moving averages
together with the confidence lines are the usable data in the
practical usage. All predictions shown are by variation brute
force searching of the model order. It is obvious that the
predicted series also adheres to the main trend. This effect is
caused by the pre-processing and post-processing of the time
series. The prediction is done to the processed series that
preserves its real trend.

According to our investigations unfortunately it is not
possible to apply any optimization approach to find the best
model order because there is not any dependence of the
prediction error by the model order. In fig. 4 — fig.6 examples of
prediction of different series types are shown by using the
prototype realized in Java.

Load/Reset Data prediction: Num:  Series: Predicted:
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Fig. 4. Prediction of a swap curve
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Load/Reset Data Prediction: Hum:  Series: Predicted:
iBRateCurves CHFLIBMOIM || 2.076-3 753 |- 0.00185
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Fig. 5. Prediction of an IB Rate curve

LoadiReset Data Prediction: Num:  Series: Predicted:
PRy LU oy s, =
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Fig. 6. Prediction of a money market series
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Fig. 7. Prediction of an index series



Load/Reset Data Prediction: Num:  Series: Predicted:
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Fig. 8. Prediction of an index

It is also important that the series type is not considered. If
the predicted values go below zero correction is not made
though this may not matter for the series. For example if a
commaodity price is predicted to be negative this is not corrected.
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