

ESTIMATION OF THE PROBABILITY OF

DEFAULT FROM INTERNAL DATA

Dr. Ventsislav Nikolov, Nikola Vasilev

October, 2018

Eurorisk Systems Ltd.

31, General Kiselov str.

9002 Varna, Bulgaria

Phone +359 52 612 367

Fax +359 52 612 371

info@eurorisksystems.com

www.eurorisksystems.com

mailto:info@eurorisksystems.com
http://www.eurorisksystems.com/

2 | Estimation of the Probability of Default from Internal Data

Contents

1. Introduction .. 4

2. Architecture of the module ... 4

3. Newton-based optimizer for the PD calculation ... 5

4. Clustering with self-organizing map .. 7

5. Tests .. 8

5.1 Test of implied PD calculator.. 8

5.2 Performance test of implied PD calculator ... 9

5.3 Performance test clustering ... 9

6. Conclusion and future work ... 10

3 | Estimation of the Probability of Default from Internal Data

Abstract: In recent years, financial institutions have been in great need for an instrument for risk

management. Several committees on banking supervision require for institutions to have reliable

rating scales for probability of default (PD), which is the most important step is the transition towards

an Internal Rating-Based (IRB) approach. This paper introduces a method for estimating the implied

probability of default and classifying it into desired credit scales. The calculation of PD is based on

Newton’s method and the classification is performed via a competitively trained neural network.

Keywords: Credit rating, Internal rating-based approach, Newton’s method, Classification, Self-

organizing map.

4 | Estimation of the Probability of Default from Internal Data

1. Introduction

Probability of default (PD) is a financial term that describes the possibility of bankruptcy within a

given time horizon. In most cases, that horizon is set to one year. PD is widely used in a variety of

credit analysis and risk management scenarios [1]. Results provided by PD are loss given default

(LGD), expected loss and exposition associated with default. The loss value can be interpreted as a

fund, where the borrower does not desire or is not able to pay the debt back in time. The probability

of default can be measured by a variety of methods, including the discriminant function [2], logistic

model, probability model, panel analysis, Cox model, decision trees and neural networks [4]. This

paper introduces an approach that is based on a heuristic algorithm, estimating the implied PD for

each contract by using a neural network with a self-organizing map (SOM), which clusters and

classifies contracts in desired credit scales.

The main aim of this method is to comply with regulatory requirements specified in Regulation (EU)

No 575/2013 of the European Parliament and Council, from 26 June 2013 [3]. In essence, the proposed

module provides an automatic generation of credit scales and a calculation of PDs for credit contracts,

based on real cooperative and government data. The module is designed to be easily transported into

a variety of different software products.

The need for new methods of credit rating calculation emerges for the following reasons:

• Actions taken by credit rating agencies are oftentimes too slow, even though the market is

dynamic;

• The evaluation process consumes a relatively long period of time. Daily obtained results can

provide significant benefits;

• Institutions can create their own rating scales to classify borrowers. In this way, the credit

rating would be more precise and more helpfull in the decision making process.

2. Architecture of the module

For the sake of an easier construction and future support, the execution of the system must be

independent from the input data and separated from the module. Input data for algorithms are:

numerical data for expected loss, credit contract details and rating scale. The conceptual design of the

architecture is shown in Fig. 1. There are three basic modules:

• Portfolio evaluator: the output from this stage is represented in the form of a pair of data –

contract ID and implied PD;

• Clustering and Optimization: uses data from the previous stage; it is based on artificial

intelligence and contracts are classified according to desirable rating scales;

• Aggregation of result and generation of a rating scale, that includes two fields: credit rating

and probability of default.

5 | Estimation of the Probability of Default from Internal Data

Fig. 1. Architecture of the module

The first stage in mathematical modules is to choose the rating scale. Different institutions work with

different scales, containing mainly words with either lowercase or uppercase letters. Some agencies

classify their borrowers according to groups, such as long and short term, cooperative and private,

etc. In the next stage, a portfolio model is build and a PD for each contract is obtained. Afterwards,

the data is analyzed and classified. The goal of the classification is to separate positions into different

groups and calculate the average PD.

3. Newton-based optimizer for the PD calculation

The main idea of this algorithm is to perform a “what-if” analysis [7]. The end result of which is to

obtain a target amount, followed by constrains and conditions. This approach aims at returning the

global minimum of a given function, based on an adaptive search method. To accomplish this, adaptive

steps are applied. With each iteration, this step decreases. The optimizer works with a general interface

function and is described by a group of formulas. The final output represents the difference between

target and estimated value. A pseudo-code is shown in Fig. 2.

The goal of this optimizer is to calculate the implied probability of default for a given position (Fig.

3). The resulting global minimum represents an absolute value and is gained through a difference

between provisions and computed expected loss via a formula. The formula for expected loss is shown

in (1):

ii

rT
k

t

MPDLGDeEL
360

0


=

= (1)

where:

r – rate;

T – time in days;

6 | Estimation of the Probability of Default from Internal Data

LGDi – Loss given default for leg I;

MPDi – Marginal PD, i.e. the difference between the current and the previously interpolated PD;

The pseudo-code of the algorithm is shown below.

searchMinimum () {

 for (num_search_iterations) {

 while (true) {

 double error = calculateError(currentValue);

 if (error is decreasing) {

 increase the step;

 currentValue = currentValue + step;

 } else {

 break;

 }

 }

 currentValue = currentValue - step;

 decrease the step;

 continue searching in the descending direction;

 }

 return currentValue;

}

Fig. 2. Pseudo-code of Newton-based optimizer

7 | Estimation of the Probability of Default from Internal Data

Fig. 3. Workflow of Newton-based optimizer

4. Clustering with self-organizing map

This solution uses a self-organizing map (SOM) [5] to obtain credit rating scales, where input data are

presented in the form of contractors’ PDs. The algorithm overview is shown in Figure 4. This type of

network is organized using connections, where every input node is completely connected to every

other node in the network. Each node represents a single credit rating. Input data required for this

algorithm are expressed in the form of a pair of data – contract ID and implied PD. The algorithm also

involves a rating scale (1), which is the key parameter to building a grid. Each node has specifically

mapped positions (coordinates X and Y), as well as weights vectors. In the current solution, the grid

looks like vector, because the size of Y is equal to one. The main reason for choosing this approach

for clustering is because this network does not require predefined data.

After building the grid, the next step is to fill the classifier with input data (2). The idea of the SOM is

to create zones that contain the same or similar credit contracts. Currently, for example, those are

contracts with the same PD. At the beginning, the contracts are randomly assorted in the grid. In order

for them to be more precise, the network must be trained (3). SOM evolves in epochs and by increasing

the number of epochs, the solution will work more accurately. This type of approach has a saturation

point. The goal of the training is to obtain grouped positions for each credit rating. After that, the

learning rate is used, which is a variable that decreases with time. Another key variable is the radius

of neighbourhood (ht), that also decreases with time. The node size can be defined as the range of each

credit scale. The classification is focused on finding the smallest distance between the input contract

and the distributed scale [6]. In other words, distance is the conditional factor for determining a

contract’s credit scale. In mathematics, this distance is known as the Euclidean distance. In fact,

because of the unavailability of a decay factor, the formula looks as follows:

2

0

)(
=

−=
k

i

ii RVd (2)

where:

V – vector containing probabilities for each contract;

R – vector containing random weights;

K – length of vector.

8 | Estimation of the Probability of Default from Internal Data

Fig. 4. Workflow of clustering with self-organizing map

The correction to other nodes is accomplished with the amount of influence:

e th

d

t

2

2

2
−

= (2)

After classifying input contracts, the clustering results are obtained, containing contract IDs. As

demonstrated in Fig. 4, the size of the radius determines the size of each cluster. The basic idea is for

similar PDs to be classified into one group.

5. Tests

5.1 Test of implied PD calculator

Tests are performed by exporting random positions into a spreadsheet software (e.g. Microsoft Excel).

In this way, positions are evaluated in tables manually and the Microsoft Excel add-in program

SOLVER is used for the calculation of implied PDs. Results generated from the algorithm must be

equivalent to the ones in the Excel model.

9 | Estimation of the Probability of Default from Internal Data

5.2 Performance test of implied PD calculator

Fig. 5 demonstrates the configuration of a performance test for the calculation of implied PD. It is

noticeable that there is a trend of linear time increase. The following test showed neither significant

decreases nor increases in time.

Fig. 5. Performance tests for the computation of implied PD

5.3 Performance test clustering

From the following analysis, it can be concluded that with the increasing number of position and

epochs, time increases linearly. This is illustrated in Table.

Time

(ms)
Epochs

250 500 1000 2000 5000

P
o

si
ti

o
n

 n
u

m
b

er

366 111 127 171 404 875

693 103 159 318 774 1654

1107 223 275 521 1061 2604

2262 382 626 1146 2212 5444

3417 567 926 1741 3634 8205

Table 1. Performance tests for clustering and building of credit scales

10 | Estimation of the Probability of Default from Internal Data

6. Conclusion and future work

The module prototype is developed in Java and is integrated in the third party software product.

Targeted rating scales are used for building transition matrices. The generated scale is shown in

column D in Fig. 6.

Fig. 6. Usage of generated credit scales

The computational part is implemented as a JAR library and can be used directly, as a module in the

business layer logic of other software systems, or as a service operation. This module complies with

the requirements stated in the EU regulations on credit institutions. In the development process,

patterns for software design, software frameworks and libraries are used, enabling readability and easy

support. Future developments could include expansions of the multi-threaded approach, as well as an

optimization of mathematical calculations. Additionally, special schemes for private and cooperative

contracts can be constructed.

