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AbstractThe article discusses the fine tuning and adjustment 
of a module for detection of duplications, which has been 
developed as a part of a larger online system. The problems and 
the current solution are discussed. In this paper a methodology to 
determine the influence of field similarities on the record pair 
similarity using a neural network is proposed.  
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I. INTRODUCTION 

Identifying of equality between different descriptions of 

the same object is quite a common problem in the modern 

IT industry. Large databases, containing several records per 

product, person, event or other object, which differ in 

abbreviations, contain misspellings, typographical errors, 

non-unique and nonstandard representations of the same 

logical entity, search engines, data cleaning software, 

intelligent user interfaces, trying to ‘predict’ the user’s 

input, thus minimizing the amount of the data to be 

inputted, are only few areas, this problem takes place. It 

prevents the proper functioning of the data mining 

algorithms, collecting statistic data, report features, etc.  

There exist various solutions for identifying the 

duplicated rows, with different level of automatization. In 

most cases the potentially identical records are provided to 

the user for confirmation. One important problem for these 

solutions is the adjustment of the search parameters: they 

are essential for proper functioning of the algorithm, affect 

both performance and quality of the results. Configuring of 

the systems could be confusing and requiring high level of 

expert competency. An attempt of using neural network for 

automated calibrating of the search engine is discussed in 

this paper. In Section II the problem is defined as well as 

the existing solution. In Section III the suggested solution is 

discussed in more details. Section IV contains results of 

applying the described approach, advantages and 

discussion. Section V contains the conclusions and plans 

for future improvement of the model. 

 

II. PROBLEM DEFINITION 

A realization of a general-purpose duplication search 
engine was introduced in [1]. The engine receives one 
record of data and seeks records in a database, which are 
similar / identical to the investigated one. For comparison a 
coefficient, representing the level of similarity between two 
strings as well as between two records (sets of strings with 

different meaning) are evaluated. Below a brief description 
of the system is given. 

- 1) Duplication Search engine 

The duplication search engine was developed [1] to help 
in determination of the level of similarity between two 
records of data (fig.1).  
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Fig. 1. Duplication Search Engine stages 

Multiple different keys are used to determine the 
clusters of potentially similar rows to be investigated more 
closely and the results of those different clusters are 
combined in similar way to the described in [5]. The engine 
uses edit distance algorithm [2] as a method for 
determination of the level of likeness between the string 
fields. It is based on the Levenshtein distance [3], defined 
as the minimum number of insertions, deletions or 
substitutions necessary to transform one string into another 
and Needleman and Wunsch [4] extension, allowing 
contiguous sequences of mismatched characters, or gaps, in 
the alignment of two strings. The comparison algorithm 
implemented by Reinhard Schneider and Chris Sander [6] 
for comparison of protein sequences, but implemented to 
compare two ASCII strings is used in the discussed engine. 
It was extended with including of several features and 
assignment of weights and bonuses as long as introducing 
of similarity tables (phonetic similarity, characters, located 
near to each other on the keyboard, etc.). The engine works 
with language-dependent interpretation of special symbols 
(ć š ä ö ß ž, etc.), abbreviations, addresses, fields, 
containing several words (for example ‘Delphi automobile 
system’ against ‘automobile systems Delphi’). The engine 
is realized as a set of modules, written in Java, C / C++, 
CLIPS. The edit-distance algorithm was realized entirely in 
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C, the database interface was written in Java (using JDBC, 
Oracle 10), the duplication search engine (management, 
analysis of data records, assigning of penalties, parsing of 
addresses, dates, algorithms for comparison etc.) was 
realized as a set of production rules for CLIPS. This 
approach, among the other advantages, gives the 
opportunity for increasing improvement of the engine with 
adding or modifying the CLIPS rules. 

 

2) Fields Priority Problem 
On the next step, the measured similarity coefficients, 

calculated for every field, are to be combined to produce 
general coefficient, representing the level of similarity 
between two records of data. It is clear, that the fields 
haven’t the same priority, they don’t bring same amount of 
information. For example, the field, containing the name of 
a person is more informative than a field, containing the 
birth date or city name. When the field-based results are to 
be combined in order final similarity coefficient to be 
calculated, they must be weighted depending on the 
informative value of the corresponding field.  

In the standard approach to the record linkage [7], the 
database records which to be searched for duplicates are 
represented by a set of attributes. Considering a candidate 
pair decision, denoted by y, where y can take values from 
the set {-1,1}. A value of 1 means, that the records in the 
pair refer to the same entity and a value of -1 means, that 
the records in the pair refer to different entities.  

Let x = (x1, x2, xn) denote a vector of similarity scores 

between the attributes corresponding to the records in the 

candidate pair. Then the probability distribution of y given 

x is defined as follows: 

f x =Î »
0

i= 1

n

Î»
i
x

i
    (1) 

f x  is known as a discriminant function. Î»
i , for 0 

<= i <= n, are the parameters of the model. Given these 
parameters and the attribute similarity vector x, a candidate 
pair decision y is predicted to be positive (a match) if f(x) > 
0 and predicted to be negative (non-match) otherwise. The 
parameters are usually set by maximum likelihood or 
maximum conditional likelihood [8].  

Using the equation (1), the duplication match definition 
can be transformed to 
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which can be interpreted as general similarity coefficient 
(calculated based on the similarities between the attributes) 
must be bigger than a certain limit in order to define the 
two records as duplicates. In the current solution priority 
levels are assigned to each of the attributes, involved in the 

investigation process; then the parameters Î»
i  in (2) are 

defined as 
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     (3) 

where weight
i

max priority priority
i  

 
The direct assigning of priorities is an expert’s task. The 

person, who will be able to set these coefficients, must be 
familiar in details not only with the general data content, 
but with the structure of the database as well. This problem 
becomes even more serious if a general solution is 
discussed, which is not hard connected to an area of 
application. A preferred solution would be one, which 
needs expert knowledge in the discussed area only. In this 
way, the structure-dependent characteristics will remain 
encapsulated in the solution. Because of these reasons a 
new approach has been investigated and developed – using 
of a neural network for automatic producing the 

discriminant function f x (2). 

III. USING A NEURAL NETWORK 

Making the decision between a conventional and a 
neural computing solution is not always entirely clear. 
There are problems for which both conventional and neural 
approaches may be able to provide appropriate solutions. 
The choice then depends on the resources available and the 
ultimate goals of the project. 

There are three main criteria which need to be applied 
when deciding whether a given problem lends itself to a 
neural computing approach: 
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Fig. 2. Input and target output of one training pattern applied to the 
neural network 

▪ The solution to the problem cannot be explicitly 
described by an algorithm, a set of equations 
(representing a physical model, for example), or a set 
of rules or it is too difficult. 

▪ There is some evidence that an input-output mapping 
exists between a set of input variables x and 
corresponding output data y, such that y = f(x).  The 
form of f() , however, is not known. In the described 
solution the defining of the f() is an expert’s task. 

▪ There should be a large amount of data available, i.e. 
many different examples with which to train the 
network. 

A. Constructing of Neural Network Architecture 

The number of inputs in a multilayer network is 
determined by the number of features or input parameters 
available for the problem under consideration. Thus, the 
neural network in the described solution has 14 input and 
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one output units (corresponding to the size of input and 
output data respectively in one learning pattern).  

The neural network was written using C# and it has one 
hidden layer. The activation function used is one of the 
most typical activation functions [9] – the binary sigmoid 
function. which has range of (0, 1). 

      (4) 
Initialization of the weights involves set of small 

random values of (-0.1, 0.1). In addition to weights, bias 
values to the neurons are involved in computing of network 
output. The learning rate for each of the patterns is 0.3. The 
choice of learning rate can have a significant effect on the 
performance of a network. Well-chosen learning rate will 
move the weight toward their optimal values in reasonable 
time. If some training data are very different from the 
majority of the data (or some part is incorrect), momentum 
factor should be used. Because the weights are initialized 
with random values, gradient descent process could last 
unpredictable time. That’s why training continued until 
reached defined number of epochs.  

B. Experimental Methodology 

    Two main elements are specific: 
▪ the collection, preparation and analysis of the 

training data 
▪ the design, training and testing of the neural 

network 
Two experiments were conducted to determine the 
research task. The experiments were conducted first for 
the expert system model and then for the neural 
network model. Both experiments used the same task 
(determination of result percentage of record similarity 
based on given similarity of their fields), the same data 
set, and the same dependent variables, except the field 
priority which is determined in expert system model 
and not known in neural network model. The data 
assumed as correct was obtained using expert system 
approach and it was clustered in appropriate input 
classes for the training set of neural network (input 
vectors) and results were used as correct output vectors. 
That data is separated for both training and testing set of 
patterns. 

The neural computing research literature is rich of 
papers which propose many different network 
architectures, but they are mainly variations of 
multilayer perceptron and radial basis function 
architectures [10]. In the same way, neural network 
used for the experimental results is standard multilayer 
perceptron with one hidden layer and backpropagation 
supervised learning. The network topology is 
constrained to be feedforward: i.e. loop-free - generally 
connections are allowed from the input layer to the 
hidden layer and from the hidden layer to the output 
layer. The hidden layer learns to recode (or to provide a 
representation for) the inputs [13]. 

Applications using neural network approach involve 
mapping a given set of inputs to a specified set of target 
outputs. The aim is to achieve network that could give 
reasonable responses to input that is similar, but not 
identical to that, used in training. The training involves 
feed-forward of the input pattern, the calculation of the 

error and adjustment of the weights and biases. In some 
cases it is slow, but a trained net produces its output 
rapidly. 

IV. IMPLEMENTATION OF A NEURAL NETWORK APPROACH 

It is important to make a reasonable estimate of how 
much data is required to train the neural network properly. 
If too small amount of data is collected, the full range of 
the relationship that the neural network should be learning 
may not be covered. The experiment need to have sufficient 
data points for the form of the mapping to be specified 
accurately enough throughout the whole range of input 
space of patterns. If there is no training data for a region of 
input space from which some of the test data is drawn, then 
there cannot be any valid generalisation for these patterns. 
In that case the neural network will always give an answer, 
but it will not be precise (fig.4). In the test, shown on this 
figure, the neural network was trained with similarities 
between 30%-60%. The deviation between the similarity 
calculated using the existing, priority-based approach and 
the one, calculated using the neural network, was too high, 
especially in the areas, outside of this range (If there is no 
deviation between both approaches the points should lay on 
the diagonal line). Thus, to ensure that the neural network 
is trained well to recognize and respond to the full range of 
values, 270.000 potential training patterns (input-output 
vectors) separated in several classes were collected using 
the priority-based approach. Each class contains examples 
which have output in the range of 10 percent and 
corresponding to their input. For instance, record similarity 
of 0 – 9% form class one, 10 – 19% form class two, etc. 
There were assembled two balanced couples of sets in 
which all the classes are uniformly represented. The first 
couple contains 50 learning and 250 testing patterns, the 
second 100 learning and 250 testing patterns. To start the 
construction of the neural network 14 variables were 
identified from each learning pattern as input (each record 
contains 14 fields). They are specified as in the example 
below: 

 

Fig. 3. A test with badly selected training patterns. 
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1 47.50 2 0.00 3 31.67 5 100.00 6 100.00 7 -3.00 8 

25.00 9 0.00 11 0.00 12 0.00 13 0.00 14 0.00 
In the above sequence are alternate integer and real data 

values composing couples of numbers. The integer ones 
correspond to the subsequent number of the data field 
participating in the training vector (that means it is the 
number of input neuron which will accept it), the real - its 
value which represents the string similarity for that field 
number. Each one of those 14 input values correspond to 
the similarity of one field for a record (f.e. first name, last 
name, city etc.) and it is defined using expert system. If 
there is a field that don't participate in evaluation, its couple 
absents. It means that data is missing for this particular 
field in the database. Then his position in forming input 
vector contains zero. The example above is converted to the 
following input of neural network: 

47.50 0.00 31.67 0.00 100.00 100.00 -3.00 25.00 0.00 
0.00 0.00 0.00 0.00 0.00 

Each one of these values is input for one neuron from 
the input layer of the network. Because of the need to 
minimize the effect of magnitude, during the pre-
processing stage the input values are normalized, 

x
i

1, 1 . The final form of input pattern is: 

0.475 0.00 0.3167 0.00 1.0 1.0 -0.03 0.25 0.00 0.00 0.00 
0.00 0.00 0.00 

The corresponding output of the neural network includes 
only one value – the estimated value of the records pair 

similarity, discriminant function f x  as defined in (2). 

 
0.475 0.00 0.3167 0.00 0.1 0.1 -0.03 0.25 0.00 0.00 0.00 

0.00 0.00 0.00 – input vector 
0.2447 - output vector 
Test data is in the same form. It was also selected 

uniformly from the classes, discussed above in the same 

way as educational data. These two sets are random and 

don’t overlap each other. Each input vector of the testing 

examples was passed through the network which produce 

output vector (of one value). Then the results of the two 

approaches were juxtaposed to be summarized and 

graphically represented in acceptable form. 

There is several known rules for the number of units in 
the hidden layer. If the number of units is too few it will 
result in underfitting. If there are too many units it can 
result in overfitting and increased time for training the 
network. In our case that number is set using trial and error 
approach. As a starting point the number of hidden neurons 
was choosen to be less than twice the input layer size. 

There were several tests performed until a suitable 

combination of number of training patterns and other 

parameters was found. 

The test with 50 training patterns, uniformly distributed 

between 0% .. 100% , have shown good representation in 

the lower part (up to 50% similarity), but with higher 

deviation in the higher part of the chart (fig.5). The test 

(fig.5) was performed with the following conditions: 

• Number of training patterns: 50  

• Number of test patterns: 250  

• Number of input neurons: 14 

• Number of hidden layers: 1 

• Number of neurons in the hidden layer:20 

• Number of output neurons:1 

• Number of training patterns: 50 

• Learning rate: 0.3 

• Momentum factor: 0.0 
Achieved average squared error:  0.00469551606559766 

 
The test with 100 training patterns, uniformly distributed 

between 0% .. 100% , have shown very good distribution 
compared to the priority-based cases along the all values of 
the test portfolio (fig.6). 

The test was performed under the following conditions:  

• Number of training patterns: 100  

• Number of test patterns: 250  

• Number of input neurons: 14 

• Number of hidden layers: 1 
 

 

Fig. 4. A test with 50 training patterns 

• Number of neurons in the hidden layer: 10 

• Number of output neurons:1 

• Learning rate: 0.3 

• Momentum factor: 0.0 

• Achieved average squared error:  
0.00432612246581036 

This solution was accepted as accurate enough for using 

in the application. 

V. CONCLUSIONS AND FUTURE WORKS 

• One direction for further improvement of the discussed 
solution is in additional tests with the neural network. 
The neural network could use more effective 
procedures for weights initialization like Nguyen-
Widrow initialization, optimization about hidden 
layer(s) or activation functions, appropriate for given 
data, different techniques to determine dynamically 
during the training the values of the learning rate and 
momentum factor, using algorithms for improve the 
performance of basic gradient descent. 
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Fig. 5. A test with 100 training patterns 

• The setting for various parameters (number of hidden 
neurons, number of learning epochs, number and 
distribution of training data patterns etc.) is a major 
challenge. Some of these parameters was chosen by the 
principle of trial and error. The developed network 
does not always give optimal solution, but with 
appropriate settings improvement it can produce better 
answer. 

• The measure of system's performance in test data is 
generally expressed in terms of accuracy, correct 
output (based on comparison with expert system 
results) and error rate. Based on preliminary well 
selected patterns neural network approach can give 
quite accurate results of record similarity compared to 
expert system approach. 

• The duplication search engine is used in two 
independent ways (fig. 7): 

 

- As a part of a WEB-based application for research and 
analyzing of large data bases, containing 
information for customers. The database in this case 
contains duplicates, which must be found and 
connected to common objects of a superstructure, 
thus providing a good platform for optimization, 
data clearing and analyzes. In this case the 
duplication search engine works as part of Business 
Layer in a mode, when the accuracy of the returned 
results is extremely important.  

- As a part of an Intelligent User Interface (IUI) 
module. In this case the main task of the engine is, 
via searching both own database and the database of 
the application, to feed the IUI with records which 
match the information, the user is currently entering 
in the GUI. In this way the IUI, using own rule-
based mechanism, is trying to predict the users enter 
and to simplify his tasks. In this case, although the 
accuracy is also important, the time for reaction is 
essential. The response must have place in real time 

in order to give chance to IUI to produce its own 
output. 
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Fig. 7. Using of Duplicate Search Engine. 

Although the results using the Neural Networks, 
described in this article, match requirements for both 
cases quite well, additional profiled investigation for 
both specific cases must be performed. 

REFERENCES 

[1] P
. Paskalev, A. Antonov, “Intelligent application for duplication 
detection”. In proceedings of the International Conference 
CompSysTech 2006, IIIA.27.1-IIIA.27.8, June. 2006. 

[2] Gusfield “Algorithms on strings, trees and sequences”. Cambridge 
Univ. Press, NY, 1997 

[3] Bilenko M., Mooney R. “Adaptive duplicate detection using 
learnable string similarity measures” In Proceedings of the Ninth 
ACM SIGKDD International Conference on Knowledge Discovery 
and Data Mining(KDD-2003), Washington DC, pp.39-48, August, 
2003 

[4] Needleman S. B. and Wunsch C. D. “A general method applicable to 
the search for similarities in the amino acid sequences of two 
proteins.” Journal of Molecular Biology, 48:443–453, 1970 

[5] Hernandez M. A. and Stolfo S. J. “The merge/purge problem for 
large databases.” In Proceedings of the 1995 ACM SIGMOD, pages 
127–138, San Jose, CA, May 1995. 

[6] Sander C. and Schneider R., "Database of homology-derived protein 
structures and the structural meaning of sequence alignment," 
Proteins, vol. 9, no. 1, pp. 56--58, 1991. 

[7] I. Fellegi and A. Sunter. “A theory for record linkage”. Journal of 
the American Statistical Association, 64:1183-1210, 1969 

[8] Parag and Pedro Domingos. ”Multi-relational record linkage”. KDD-
2004 Workshop on Multi-Relational Data Mining (pp. 31-48), 2004 

[9] Laurene Fausett, “Fundamentals of neural networks. architectures, 
algorithms and applications”. Prentice Hall, 1994, ISBN: 
0133341860 

[10] M. Young, “The Technical Writer's Handbook”.  Mill Valley, CA: 
University Science, 1989. 

[11] Lionel Tarassenko, “A Guide to Neural Computing Applications”. 
Butterworth-Heinemann, 1998, ISBN: 0340705892 

[12] Barbara D. Klein and Donald F. Rossin “Data errors in neural 
network and linear regression models: An experimental comparison” 
Data Quality, vol5, n1, 1999– www.dataquality.com/999KR.htm 

[13] Leslie Smith, “An Introduction to Neural Networks”, 
http://www.cs.stir.ac.uk/~lss/NNIntro/InvSlides.html 

http://www.dataquality.com/999KR.htm
http://www.cs.stir.ac.uk/~lss/NNIntro/InvSlides.html

