

1

AbstractThe article discusses the fine tuning and adjustment
of a module for detection of duplications, which has been
developed as a part of a larger online system. The problems and
the current solution are discussed. In this paper a methodology to
determine the influence of field similarities on the record pair
similarity using a neural network is proposed.

Index Termsartificial intelligence, duplications detection,

intelligent user interfaces, neural networks, record linkage

I. INTRODUCTION

Identifying of equality between different descriptions of

the same object is quite a common problem in the modern

IT industry. Large databases, containing several records per

product, person, event or other object, which differ in

abbreviations, contain misspellings, typographical errors,

non-unique and nonstandard representations of the same

logical entity, search engines, data cleaning software,

intelligent user interfaces, trying to ‘predict’ the user’s

input, thus minimizing the amount of the data to be

inputted, are only few areas, this problem takes place. It

prevents the proper functioning of the data mining

algorithms, collecting statistic data, report features, etc.

There exist various solutions for identifying the

duplicated rows, with different level of automatization. In

most cases the potentially identical records are provided to

the user for confirmation. One important problem for these

solutions is the adjustment of the search parameters: they

are essential for proper functioning of the algorithm, affect

both performance and quality of the results. Configuring of

the systems could be confusing and requiring high level of

expert competency. An attempt of using neural network for

automated calibrating of the search engine is discussed in

this paper. In Section II the problem is defined as well as

the existing solution. In Section III the suggested solution is

discussed in more details. Section IV contains results of

applying the described approach, advantages and

discussion. Section V contains the conclusions and plans

for future improvement of the model.

II. PROBLEM DEFINITION

A realization of a general-purpose duplication search
engine was introduced in [1]. The engine receives one
record of data and seeks records in a database, which are
similar / identical to the investigated one. For comparison a
coefficient, representing the level of similarity between two
strings as well as between two records (sets of strings with

different meaning) are evaluated. Below a brief description
of the system is given.

- 1) Duplication Search engine

The duplication search engine was developed [1] to help
in determination of the level of similarity between two
records of data (fig.1).

Data Clustering

Beginning

End

Data Preparation

Similarity on Field
level

Similarity on
Record level

Fig. 1. Duplication Search Engine stages

Multiple different keys are used to determine the
clusters of potentially similar rows to be investigated more
closely and the results of those different clusters are
combined in similar way to the described in [5]. The engine
uses edit distance algorithm [2] as a method for
determination of the level of likeness between the string
fields. It is based on the Levenshtein distance [3], defined
as the minimum number of insertions, deletions or
substitutions necessary to transform one string into another
and Needleman and Wunsch [4] extension, allowing
contiguous sequences of mismatched characters, or gaps, in
the alignment of two strings. The comparison algorithm
implemented by Reinhard Schneider and Chris Sander [6]
for comparison of protein sequences, but implemented to
compare two ASCII strings is used in the discussed engine.
It was extended with including of several features and
assignment of weights and bonuses as long as introducing
of similarity tables (phonetic similarity, characters, located
near to each other on the keyboard, etc.). The engine works
with language-dependent interpretation of special symbols
(ć š ä ö ß ž, etc.), abbreviations, addresses, fields,
containing several words (for example ‘Delphi automobile
system’ against ‘automobile systems Delphi’). The engine
is realized as a set of modules, written in Java, C / C++,
CLIPS. The edit-distance algorithm was realized entirely in

Evaluation of Records Similarity in a Duplication
Search Engine using Neural Network

Plamen Paskalev, Ventsislav Nikolov

2

C, the database interface was written in Java (using JDBC,
Oracle 10), the duplication search engine (management,
analysis of data records, assigning of penalties, parsing of
addresses, dates, algorithms for comparison etc.) was
realized as a set of production rules for CLIPS. This
approach, among the other advantages, gives the
opportunity for increasing improvement of the engine with
adding or modifying the CLIPS rules.

2) Fields Priority Problem
On the next step, the measured similarity coefficients,

calculated for every field, are to be combined to produce
general coefficient, representing the level of similarity
between two records of data. It is clear, that the fields
haven’t the same priority, they don’t bring same amount of
information. For example, the field, containing the name of
a person is more informative than a field, containing the
birth date or city name. When the field-based results are to
be combined in order final similarity coefficient to be
calculated, they must be weighted depending on the
informative value of the corresponding field.

In the standard approach to the record linkage [7], the
database records which to be searched for duplicates are
represented by a set of attributes. Considering a candidate
pair decision, denoted by y, where y can take values from
the set {-1,1}. A value of 1 means, that the records in the
pair refer to the same entity and a value of -1 means, that
the records in the pair refer to different entities.

Let x = (x1, x2, xn) denote a vector of similarity scores

between the attributes corresponding to the records in the

candidate pair. Then the probability distribution of y given

x is defined as follows:

f x =Î »
0

i= 1

n

Î»
i
x

i
 (1)

f x is known as a discriminant function. Î»
i , for 0

<= i <= n, are the parameters of the model. Given these
parameters and the attribute similarity vector x, a candidate
pair decision y is predicted to be positive (a match) if f(x) >
0 and predicted to be negative (non-match) otherwise. The
parameters are usually set by maximum likelihood or
maximum conditional likelihood [8].

Using the equation (1), the duplication match definition
can be transformed to

f x
i= 1

n

Î»
i
x

i
>Î »

0

'
 (2)

which can be interpreted as general similarity coefficient
(calculated based on the similarities between the attributes)
must be bigger than a certain limit in order to define the
two records as duplicates. In the current solution priority
levels are assigned to each of the attributes, involved in the

investigation process; then the parameters Î»
i in (2) are

defined as

Î»
i

weight
i

i= 1

n

weight
i

 (3)

where weight
i

max priority priority
i

The direct assigning of priorities is an expert’s task. The

person, who will be able to set these coefficients, must be
familiar in details not only with the general data content,
but with the structure of the database as well. This problem
becomes even more serious if a general solution is
discussed, which is not hard connected to an area of
application. A preferred solution would be one, which
needs expert knowledge in the discussed area only. In this
way, the structure-dependent characteristics will remain
encapsulated in the solution. Because of these reasons a
new approach has been investigated and developed – using
of a neural network for automatic producing the

discriminant function f x (2).

III. USING A NEURAL NETWORK

Making the decision between a conventional and a
neural computing solution is not always entirely clear.
There are problems for which both conventional and neural
approaches may be able to provide appropriate solutions.
The choice then depends on the resources available and the
ultimate goals of the project.

There are three main criteria which need to be applied
when deciding whether a given problem lends itself to a
neural computing approach:

Hidden
Layer

Input Layer Output
Layer

x1

X2

Xn-1

Xn

f*(x)

Fig. 2. Input and target output of one training pattern applied to the
neural network

▪ The solution to the problem cannot be explicitly
described by an algorithm, a set of equations
(representing a physical model, for example), or a set
of rules or it is too difficult.

▪ There is some evidence that an input-output mapping
exists between a set of input variables x and
corresponding output data y, such that y = f(x). The
form of f() , however, is not known. In the described
solution the defining of the f() is an expert’s task.

▪ There should be a large amount of data available, i.e.
many different examples with which to train the
network.

A. Constructing of Neural Network Architecture

The number of inputs in a multilayer network is
determined by the number of features or input parameters
available for the problem under consideration. Thus, the
neural network in the described solution has 14 input and

3

one output units (corresponding to the size of input and
output data respectively in one learning pattern).

The neural network was written using C# and it has one
hidden layer. The activation function used is one of the
most typical activation functions [9] – the binary sigmoid
function. which has range of (0, 1).

 (4)
Initialization of the weights involves set of small

random values of (-0.1, 0.1). In addition to weights, bias
values to the neurons are involved in computing of network
output. The learning rate for each of the patterns is 0.3. The
choice of learning rate can have a significant effect on the
performance of a network. Well-chosen learning rate will
move the weight toward their optimal values in reasonable
time. If some training data are very different from the
majority of the data (or some part is incorrect), momentum
factor should be used. Because the weights are initialized
with random values, gradient descent process could last
unpredictable time. That’s why training continued until
reached defined number of epochs.

B. Experimental Methodology

 Two main elements are specific:
▪ the collection, preparation and analysis of the

training data
▪ the design, training and testing of the neural

network
Two experiments were conducted to determine the
research task. The experiments were conducted first for
the expert system model and then for the neural
network model. Both experiments used the same task
(determination of result percentage of record similarity
based on given similarity of their fields), the same data
set, and the same dependent variables, except the field
priority which is determined in expert system model
and not known in neural network model. The data
assumed as correct was obtained using expert system
approach and it was clustered in appropriate input
classes for the training set of neural network (input
vectors) and results were used as correct output vectors.
That data is separated for both training and testing set of
patterns.

The neural computing research literature is rich of
papers which propose many different network
architectures, but they are mainly variations of
multilayer perceptron and radial basis function
architectures [10]. In the same way, neural network
used for the experimental results is standard multilayer
perceptron with one hidden layer and backpropagation
supervised learning. The network topology is
constrained to be feedforward: i.e. loop-free - generally
connections are allowed from the input layer to the
hidden layer and from the hidden layer to the output
layer. The hidden layer learns to recode (or to provide a
representation for) the inputs [13].

Applications using neural network approach involve
mapping a given set of inputs to a specified set of target
outputs. The aim is to achieve network that could give
reasonable responses to input that is similar, but not
identical to that, used in training. The training involves
feed-forward of the input pattern, the calculation of the

error and adjustment of the weights and biases. In some
cases it is slow, but a trained net produces its output
rapidly.

IV. IMPLEMENTATION OF A NEURAL NETWORK APPROACH

It is important to make a reasonable estimate of how
much data is required to train the neural network properly.
If too small amount of data is collected, the full range of
the relationship that the neural network should be learning
may not be covered. The experiment need to have sufficient
data points for the form of the mapping to be specified
accurately enough throughout the whole range of input
space of patterns. If there is no training data for a region of
input space from which some of the test data is drawn, then
there cannot be any valid generalisation for these patterns.
In that case the neural network will always give an answer,
but it will not be precise (fig.4). In the test, shown on this
figure, the neural network was trained with similarities
between 30%-60%. The deviation between the similarity
calculated using the existing, priority-based approach and
the one, calculated using the neural network, was too high,
especially in the areas, outside of this range (If there is no
deviation between both approaches the points should lay on
the diagonal line). Thus, to ensure that the neural network
is trained well to recognize and respond to the full range of
values, 270.000 potential training patterns (input-output
vectors) separated in several classes were collected using
the priority-based approach. Each class contains examples
which have output in the range of 10 percent and
corresponding to their input. For instance, record similarity
of 0 – 9% form class one, 10 – 19% form class two, etc.
There were assembled two balanced couples of sets in
which all the classes are uniformly represented. The first
couple contains 50 learning and 250 testing patterns, the
second 100 learning and 250 testing patterns. To start the
construction of the neural network 14 variables were
identified from each learning pattern as input (each record
contains 14 fields). They are specified as in the example
below:

Fig. 3. A test with badly selected training patterns.

4

1 47.50 2 0.00 3 31.67 5 100.00 6 100.00 7 -3.00 8

25.00 9 0.00 11 0.00 12 0.00 13 0.00 14 0.00
In the above sequence are alternate integer and real data

values composing couples of numbers. The integer ones
correspond to the subsequent number of the data field
participating in the training vector (that means it is the
number of input neuron which will accept it), the real - its
value which represents the string similarity for that field
number. Each one of those 14 input values correspond to
the similarity of one field for a record (f.e. first name, last
name, city etc.) and it is defined using expert system. If
there is a field that don't participate in evaluation, its couple
absents. It means that data is missing for this particular
field in the database. Then his position in forming input
vector contains zero. The example above is converted to the
following input of neural network:

47.50 0.00 31.67 0.00 100.00 100.00 -3.00 25.00 0.00
0.00 0.00 0.00 0.00 0.00

Each one of these values is input for one neuron from
the input layer of the network. Because of the need to
minimize the effect of magnitude, during the pre-
processing stage the input values are normalized,

x
i

1, 1 . The final form of input pattern is:

0.475 0.00 0.3167 0.00 1.0 1.0 -0.03 0.25 0.00 0.00 0.00
0.00 0.00 0.00

The corresponding output of the neural network includes
only one value – the estimated value of the records pair

similarity, discriminant function f x as defined in (2).

0.475 0.00 0.3167 0.00 0.1 0.1 -0.03 0.25 0.00 0.00 0.00

0.00 0.00 0.00 – input vector
0.2447 - output vector
Test data is in the same form. It was also selected

uniformly from the classes, discussed above in the same

way as educational data. These two sets are random and

don’t overlap each other. Each input vector of the testing

examples was passed through the network which produce

output vector (of one value). Then the results of the two

approaches were juxtaposed to be summarized and

graphically represented in acceptable form.

There is several known rules for the number of units in
the hidden layer. If the number of units is too few it will
result in underfitting. If there are too many units it can
result in overfitting and increased time for training the
network. In our case that number is set using trial and error
approach. As a starting point the number of hidden neurons
was choosen to be less than twice the input layer size.

There were several tests performed until a suitable

combination of number of training patterns and other

parameters was found.

The test with 50 training patterns, uniformly distributed

between 0% .. 100% , have shown good representation in

the lower part (up to 50% similarity), but with higher

deviation in the higher part of the chart (fig.5). The test

(fig.5) was performed with the following conditions:

• Number of training patterns: 50

• Number of test patterns: 250

• Number of input neurons: 14

• Number of hidden layers: 1

• Number of neurons in the hidden layer:20

• Number of output neurons:1

• Number of training patterns: 50

• Learning rate: 0.3

• Momentum factor: 0.0
Achieved average squared error: 0.00469551606559766

The test with 100 training patterns, uniformly distributed

between 0% .. 100% , have shown very good distribution
compared to the priority-based cases along the all values of
the test portfolio (fig.6).

The test was performed under the following conditions:

• Number of training patterns: 100

• Number of test patterns: 250

• Number of input neurons: 14

• Number of hidden layers: 1

Fig. 4. A test with 50 training patterns

• Number of neurons in the hidden layer: 10

• Number of output neurons:1

• Learning rate: 0.3

• Momentum factor: 0.0

• Achieved average squared error:
0.00432612246581036

This solution was accepted as accurate enough for using

in the application.

V. CONCLUSIONS AND FUTURE WORKS

• One direction for further improvement of the discussed
solution is in additional tests with the neural network.
The neural network could use more effective
procedures for weights initialization like Nguyen-
Widrow initialization, optimization about hidden
layer(s) or activation functions, appropriate for given
data, different techniques to determine dynamically
during the training the values of the learning rate and
momentum factor, using algorithms for improve the
performance of basic gradient descent.

5

Fig. 5. A test with 100 training patterns

• The setting for various parameters (number of hidden
neurons, number of learning epochs, number and
distribution of training data patterns etc.) is a major
challenge. Some of these parameters was chosen by the
principle of trial and error. The developed network
does not always give optimal solution, but with
appropriate settings improvement it can produce better
answer.

• The measure of system's performance in test data is
generally expressed in terms of accuracy, correct
output (based on comparison with expert system
results) and error rate. Based on preliminary well
selected patterns neural network approach can give
quite accurate results of record similarity compared to
expert system approach.

• The duplication search engine is used in two
independent ways (fig. 7):

- As a part of a WEB-based application for research and
analyzing of large data bases, containing
information for customers. The database in this case
contains duplicates, which must be found and
connected to common objects of a superstructure,
thus providing a good platform for optimization,
data clearing and analyzes. In this case the
duplication search engine works as part of Business
Layer in a mode, when the accuracy of the returned
results is extremely important.

- As a part of an Intelligent User Interface (IUI)
module. In this case the main task of the engine is,
via searching both own database and the database of
the application, to feed the IUI with records which
match the information, the user is currently entering
in the GUI. In this way the IUI, using own rule-
based mechanism, is trying to predict the users enter
and to simplify his tasks. In this case, although the
accuracy is also important, the time for reaction is
essential. The response must have place in real time

in order to give chance to IUI to produce its own
output.

Business Logic

Database

WEB interface

Business Logic

WEB interface

IUI

a) b)

Duplication Search

Duplication Search

Database

Fig. 7. Using of Duplicate Search Engine.

Although the results using the Neural Networks,
described in this article, match requirements for both
cases quite well, additional profiled investigation for
both specific cases must be performed.

REFERENCES

[1] P
. Paskalev, A. Antonov, “Intelligent application for duplication
detection”. In proceedings of the International Conference
CompSysTech 2006, IIIA.27.1-IIIA.27.8, June. 2006.

[2] Gusfield “Algorithms on strings, trees and sequences”. Cambridge
Univ. Press, NY, 1997

[3] Bilenko M., Mooney R. “Adaptive duplicate detection using
learnable string similarity measures” In Proceedings of the Ninth
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining(KDD-2003), Washington DC, pp.39-48, August,
2003

[4] Needleman S. B. and Wunsch C. D. “A general method applicable to
the search for similarities in the amino acid sequences of two
proteins.” Journal of Molecular Biology, 48:443–453, 1970

[5] Hernandez M. A. and Stolfo S. J. “The merge/purge problem for
large databases.” In Proceedings of the 1995 ACM SIGMOD, pages
127–138, San Jose, CA, May 1995.

[6] Sander C. and Schneider R., "Database of homology-derived protein
structures and the structural meaning of sequence alignment,"
Proteins, vol. 9, no. 1, pp. 56--58, 1991.

[7] I. Fellegi and A. Sunter. “A theory for record linkage”. Journal of
the American Statistical Association, 64:1183-1210, 1969

[8] Parag and Pedro Domingos. ”Multi-relational record linkage”. KDD-
2004 Workshop on Multi-Relational Data Mining (pp. 31-48), 2004

[9] Laurene Fausett, “Fundamentals of neural networks. architectures,
algorithms and applications”. Prentice Hall, 1994, ISBN:
0133341860

[10] M. Young, “The Technical Writer's Handbook”. Mill Valley, CA:
University Science, 1989.

[11] Lionel Tarassenko, “A Guide to Neural Computing Applications”.
Butterworth-Heinemann, 1998, ISBN: 0340705892

[12] Barbara D. Klein and Donald F. Rossin “Data errors in neural
network and linear regression models: An experimental comparison”
Data Quality, vol5, n1, 1999– www.dataquality.com/999KR.htm

[13] Leslie Smith, “An Introduction to Neural Networks”,
http://www.cs.stir.ac.uk/~lss/NNIntro/InvSlides.html

http://www.dataquality.com/999KR.htm
http://www.cs.stir.ac.uk/~lss/NNIntro/InvSlides.html

