

1

Framework for Building Ontology-Based Dynamic Applications

Samuil Nikolov, Anatoliy Antonov

Abstract: The publication describes the main principles of operation of a commercial software framework
that is used for developing financial applications represented with ontologies. It is shown that the ontology
structure can be extended and modified, without disturbing the working process of the application. The
framework generates dynamic user interface used to define class instances. It effectively hides the
theoretical background of the product and allows the end user to work with terms familiar to him.

Keywords: Ontology, Dynamic Ontology Construction, Knowledge Representation, Applications with
Dynamic User Interface.

INTRODUCTION
The goal of the publication is to describe the principles of operation of a flexible and
extendable framework, developed by the authors, that allows real time configuration of
ontology, processing and analyzing the data in it. The main advantages of the proposed
solution are:

• The ontology representation is hidden for the end user;

• Possibility for the ontology specialist to extend it without interrupting the working
process.

Most existing solutions for creating and analyzing ontologies deal with the problem of
semantic processing of knowledge in internet. The web ontology language OWL [1] is
most widely used and a lot of products are based on it. Most often, analysis is performed
on the entire ontology or between different ontologies. Chimaera [6][8] supports merging
multiple ontologies together and diagnosing individual or multiple ontologies. PROMPT [5]
manages multiple ontologies in Protégé. OntoBroker [4] analyzes ontologies defined with
OntoStudio [3]. OntoMerge [9] creates translations by merging two or more ontologies.
DYNAMO [7] supports an ontologist in the process of extracting ontologies from free
defined text. From the reviewed solutions, Protégé [2] is the most complete, supported and
used framework for building and analysis of ontologies [18][19][20]. The means for
describing them include:

• Definition of classes and attributes;

• Definition of links between the classes.
The means for analysis include:

• Defining services for domain processing;

• Defining user interface for creating instances and specifying their attributes;

• Persisting class instances and their attributes.
The result generated in Protégé is a static ontology definition [10] that can be

analyzed by the end user. However, he has to be a specialist in the field of ontologies and
to understand their internal organization, to be able to analyze it [11].

In the presented solution the end user can add class instances in real time without
having any knowledge of ontologies. The specialist in ontologies and in the specific
domain which is modeled prepares for the user the following:

• Classes and links between them;

• User interface for attribute input and business logic for validation of the entered
values;

• Business logic for analyzing the class instances created by the user.
In real time, the end user can:

• Create new instances of the defined classes;

• Edit the attributes of the instances and store them in a persistent medium;

2

• Obtain the results of analysis over the instances added by him. The analysis is
incorporated in the business logic defined by the domain specialist;

• Add new classes to the ontology without interrupting the work process. The new
classes are provided by the domain specialist.

1. Structure of the proposed solution
1.1. Applications in the Risk Framework environment

The dynamic ontology construction will be demonstrated in the commercial product Risk
Framework [14][15][16], developed by the authors. It is used for creating series of financial
applications, which are essentially ontology domains.
Every application developed for the environment uses a set of classes represented in the
system by models. The product is based on a Clips interpreter [13] and C++ interface
layer. The layer provides:

• Ability to add and delete class instances in real time;

• Dynamically generated user interface for editing attributes of the created
instances;

• Persisting and loading ontological data;

• Management of the set of models, defining the domain;

• Starting the execution of business logic incorporated in the models.
The Clips interpreter processes the models, which includes:

• Loading of models that represent the ontology classes;

• Communicating the dynamic user interface description in the models to the C++
layer for rendering;

• Executing Clips rules representing the business logic and calculating proper
values for some of the attributes of the current class.

1.2. Models

The models in Risk Framework encapsulate the ontology elements Class, Properties and
Forms, used in [2]. The different modeling approach used by the authors corresponds to
classes in Object Oriented Programming [17], which unite the data with the operations
performed on them. The models are created by a specialist in the domain represented by
the specific Risk Framework application. Every model is a Clips program which is
interpreted in real time. It contains:

• Facts about user interface definition [12];

• Validation logic for the user input;

• Logic, defining the connections between the current class and the other classes
in the domain;

• Business logic for analyzing the data input by the user and/or contained in
persisted instances of other classes.

The interface layer of the system controls one instance of the Clips interpreter, where a
single model can be loaded as a result of user actions or due to business logic defined in
other models. Without interrupting the process, the ontology specialist can replace all the
models except the currently loaded one and add new ones. Thus the structure and
contents of the modeled ontology can be changed in real time. In case a new class is
needed, the domain specialist creates a new model, describing the user interface for it and
defining the business logic. Then he submits it to the end user, who can load it using the
interface layer and create instances of the new class. The ontology definition limits the
number of instances the user can create and persist.

1.3. Sessions
Sessions in Risk Framework are class instances persisted by the end user. Every session

3

is uniquely defined by an identifier, containing a string (Item ID) freely entered by the user.
The session contains information about the class which instance it is, about the values of
the attributes entered by the user and about the links created to persisted instances of
other classes. They do not contain information about user interface description. This
allows modifying the visualization of the persisted session attributes in real time by
changing the dynamic user interface descriptions in the model.

2. Principles of operation of the Risk Framework environment

The principles of operation of Risk Framework will be described to show that the end user
does not need to have any knowledge of ontologies and that the theoretical background of
the system remains hidden for him. The C++ interface layer of Risk Framework has two
main elements – a tree control and a dialog window.
The tree contains a list of identifiers of instances called Items in the system. It can be used
to create, delete and modify class instances. Figure 1 shows an example of such list
containing one identifier - RFW System and one class instance – session, associated with
it. The session is from a class called “Catalogs in Risk Framework”.

Figure 1. List of identifiers in a tree control

The other interface element – the dialog window is used for editing attributes of class
instances and activating the business logic associated with them. It is opened by choosing
and opening any of the sessions shown in the tree control. Besides class attributes, the
dialog window can also contain tables with links to other class instances. The contents of
the window are dynamically generated in accordance with the description in the model,
currently loaded inside the interpreter. Figure 2 shows a part of the user interface,
generated for the class Catalogs in Risk Framework.

Figure 2. Dynamically generated user interface in the dialog window

4

The tree control in the left part of the dialog window is used as a navigation map. The right
part is the dynamic interface. The one in the screenshot contains a group box - Portfolio
Registration, two labels – List of portfolios and Definition, a control button with an image
and a table with extendable contents. The buttons in the lower part of the dialog window
can be used to start the business logic inside the model, store or print the data entered by
the user. By adding rows in the table and entering identifiers in the proper column, the user
can link the current catalog instance with concrete instances of another class in the
ontology - Portfolio Definition, which in this case describes data about a financial portfolio.

3. Example of creating a Portfolio Management application

To develop the application, the portfolio management specialist, who is also a specialist in
ontologies, creates Clips models each representing a class from the domain – portfolio,
position, list, filter, instrument, client, yield curve. During the design the possible links
between the classes are determined. For instance, the link between portfolio and position
is modeled by adding an interface table in the portfolio model that will contain the item
identifiers of the positions associated with it. Some of the created models are used as
organizational models and aid the operation of the other ones. Such is the Catalogs in
Risk Framework model shown in Figure 2.
When the user starts the Risk Framework environment, the identifier list shown on Figure
1 contains one default item identifier - RFW System, which has no associated session.
The user has to load the organizational model Catalogs in Risk Framework from the
interface layer and to create an instance of the class described by it. When the session is
opened, the internal user interface definition is dynamically rendered (Figure 2).
The user interface defined by the domain specialist allows the user to add new rows to the
tables in the catalog. The user can add rows to the “list of portfolios” table and input
identifiers of portfolios that will be included in the catalog. In the example shown there are
two identifiers added - ALM PF and TRD PF. To create actual instances of the class
Portfolio Definition associated to the entered identifiers, the user has to activate the button
Definition. Thus, he starts the business logic inside the model Catalogs in Risk
Framework. Two main events are triggered:

• The Portfolio Definition model is loaded in the Clips interpreter;

• The C++ interface layer is activated, modifying the contents of the tree control.
The default identifier RFW System is replaced by the two identifiers entered by
the user in portfolio table (Figure 3).

Figure 3. Contents of the tree control after activating the business logic in the model

Catalogs in Risk Framework

By the described activation of the business logic a transition is made from defining

5

instances of the organizational model Catalogs in Risk Framework to defining instances of
the class Portfolio Definition. From the end user point of view, defining the described
ontology consists in adding portfolios and editing their parameters. The underlying
theoretical model is completely concealed behind the described user interface. The
ontological links between the classes are implemented by adding interface tables to the
generated user interface and business logic that controls the validity of their contents. For
example, the user will not be able to set up a backward link between a Portfolio Definition
class instance and the Catalogs in Risk Framework class instance, because the user
interface, generated for defining portfolios does not contain a table with catalogs. It does
contain, however, a table for defining positions, which models in their turn contain tables
for defining financial instruments etc.
In the new state of the tree control, the user can create new instances of the Portfolio
Definition class using the drop-down menu provided by the interface layer. Figure 3 shows
the state of the tree element with a newly created instance for the identifier TRD PF and
the process of creating a session for the other identifier - ALM PF. The user can store
sessions in the persistent medium, reload them if another user has modified them and
generate reports from the data stored inside. The newly generated sessions can be
opened which will dynamically render the user interface described in the model Portfolio
Definition. In it, the user can input general portfolio attributes and the position identifiers
that will be contained in the specific portfolio. By activating a similar Definition button, the
C++ layer will load their corresponding model - Position Data and reload the tree control
with the entered position identifiers.
All instances of the classes, defined by the specialist, are created in a similar way. Adding
a new class to the ontology consists in creating the new model and in corresponding
modification of all the models that have ontological link to it.

CONCLUSIONS AND FUTURE WORK
The proposed solution for ontology data definition is more flexible and extendable than the
examined existing solutions. Moreover, no theoretical knowledge of ontologies is required
from the end user. This is due to the data structure and principles of operation described in
the publication. The dynamically generated user interface hides the theoretical
backgrounds of Risk Framework environment. The limited size of the publication did not
allow reviewing some other important aspects of the solution:

• Organization and operation of the persistent layer;

• Interaction between the C++ interface layer and the Clips interpreter;

• Mapping of stored session properties to models modified by the ontology
specialist;

• The business logic implemented in models;

• Historical development of the persisted sessions allowing storage of different
attributes for a class instance in different time points.

The described environment is used for executing series of financial applications like Basel
II Risk Management [14], Operational Risk Management [15], and Asset and Liability
Management [16].
The future development of the product is connected with developing a web solution based
on the same principles of operation and developing applications outside the field of
finance.

REFERENCES
[1] OWL. Web Ontology Language. W3C. - http://www.w3c.org/TR/owl-features/
[2] Protégé. - http://protege.stanford.edu/ontologies/ontologyOfScience.
[3] OntoStudio. - http://www.ontoprise.de/en/home/products/ontostudio/
[4] OntoBroker http://www.ontoprise.de/en/home/products/ontobroker/

6

[5] Noy N., Musen M. The PROMPT Suite: Interactive Tools For Ontology Merging
And Mapping, Stanford Medical Informatics, Stanford Univ., 2003.

[6] McGuinness, Deborah L., Richard Fikes, James Rice, and Steve Wilder. "An
Environment for Merging and Testing Large Ontologies." Proceedings of the Seventh
International Conference on Principles of Knowledge Representation and Reasoning
(KR2000). Breckenridge, Colorado, USA. April 12-15, 2000.

[7] Zied Sellami, Marie Pierre Gleizes, Nathalie Aussenac-Gilles, Sylvain
Rougemaille, Dynamic Ontology Co-construction based on Adaptive Multi-Agent
Technology, KEOD 2009 - Proceedings of the International Conference on Know ledge
Engineering and Ontology Development, Funchal - Madeira, Portugal, October 6-8, 2009.

[8] McGuinness, Deborah L., Richard Fikes, James Rice, and Steve Wilder. "The
Chimaera Ontology Environment." Proceedings of the Seventeenth National Conference
on Artificial Intelligence (AAAI 2000), Austin, Texas. July 30 - August 3, 2000.

[9] Dejing Dou, Drew McDermott, and Peishen Qi 2003 Ontology Translation on the
Semantic Web. In Proc. Int'l Conf. on Ontologies, Databases and Applications of
SEmantics (ODBASE2003), LNCS 2888, pp. 952-969.

[10] Hai H. Wang, Natasha Noy, Alan Rector, Mark Musen, Timothy Redmond, Daniel
Rubin, Samson Tu, Tania Tudorache, Nick Drummond, Matthew Horridge, and Julian
Sedenberg. Frames and OWL side by side. In 10th International Protege
Conference,Budapest, Hungary, July 2007.

[11] Holger Knublauch, Ray W. Fergerson, Natalya F. Noy and Mark A. Musen The
Protégé OWL Plugin: An Open Development Environment for Semantic Web Applications
Third International Semantic Web Conference, Hiroshima, Japan (2004), pp. 229-243.

[12] Paskalev Pl., Nikolov Vl., Multi-platform, script-based user interface,
CompSysTech, 2004.

[13] Giarratano, Joseph C., Ph.D. CLIPS User’s guide Version 6.20, March 31st,
2002.

[14] Credit risk measurement and management according to the Basel II-
http://www.eurorisksystems.com/download/CreditRiskBasel2_Eurorisk_EN.zip.

[15] Operational Risk Implementation based on Risk Framework-
http://www.eurorisksystems.com/download/Presentation_OR_EuroRisk_EN.zip.

[16] Asset Liability Management in Risk Framework-
http://www.eurorisksystems.com/download/Presentation_ALM_EuroRisk_EN.zip.

[17] Grady Booch, Robert Maksimchuk, Michael Engle, Bobbi Young, Jim Conallen,
Kelli Houston, Object-oriented analysis and design with applications, third edition,
Addison-Wesley Professional, 2007.

[18] 9th Intl. Protégé Conference - July 23-26, 2006 - Stanford, California-
http://protege.stanford.edu/conference/2006/

[19] 10th Intl. Protégé Conference - July 15-18, 2007 - Budapest, Hungary-
http://protege.stanford.edu/conference/2007/

[20] 11th Intl. Protégé Conference - June 23-26, 2009 - Amsterdam, Netherlands-
http://protege.stanford.edu/conference/2009/

ABOUT THE AUTHORS

Dr. Anatoliy Antonov, Eurorisk Systems Ltd., 31, General Kiselov Str., 9002 Varna,
Bulgaria, Е-mail: antonov at eurorisksystems dot com
Samuil Nikolov, Eurorisk Systems Ltd., 31, General Kiselov Str., 9002 Varna, Bulgaria

