

1

CreditMetrics
CreditMetrics is a credit risk model that quantifies the loss caused by a change in the obligor’s

creditworthiness. Credits are subject to an interest rate risk and counter party risk. The main goal

of the credit risk evaluation is the computation of the credit risk exposure profile, showing the

notional amount that can be lost when a counterparty defaults its obligations. Credit risk of

counterparties is measured by single value, the Value-at-Risk(VaR). VaR represents unexpected

losses of the portfolio value due to credit events at given confidence level and horizon. The

measure of credit risk depends on the estimation of a transaction’s mark-to-market value on

different future sampling time points, where the counterparty is expected to default. It is assumed

that in case of default at a future time point all remaining positive cash flows will be lost, so the

loss can be expressed as the probability-weighted mark-to-market value of these cash flows.

Portfolio histogram and distribution

The consolidation of the counterparty’s credit risk distribution is based on the structured Monte

Carlo simulation which uses the Monte Carlo simulation engine, given the non-normal credit risk

distribution. The main calculation target is the generation of appropriate credit rating movement

scenarios in accordance with the counterparty credit risk distribution

OpenCL™
Open Computing Language(OpenCL™) is the open, royalty-free standard for cross-platform,

parallel programming of diverse processors found in personal computers, servers, mobile devices

and embedded platforms. Using the OpenCL, users can launch computation on high-performance

devices – mostly Graphical Processor Units(GPU). GPU is graphical processor unit. It presented

as a "single-chip processor with integrated transform, lighting, triangle setup/clipping, and

rendering engines”, but in finance we could use the potential of this resource to better financial

2

computing. It’s make sense because faster pricing gains more revenue, more modeling gains less

risk and maximizing resources gives more efficiency. Nowadays GPUs enables you to calculate,

simulate and predict pricing and risk for complex options, OTC derivate, complex EOT types

instruments in seconds, rather than minutes or even hours. The architecture of GPUs allows you

to run more simulations that would increase the quality of your results. With more confidence in

your data, you are able to offer tighter spread and gain competiveness. GPU even make it

possible to run complex model, that were even impossible. You can obtain results of very complex

models in real/near time, rather than overnight, and also provide deeper insight into your

exposures enabling you to rapidly adjust positions and reduce risk.

Functions executed on an OpenCL device are called "kernels". OpenCL is mostly used on AMD,

NVidia and Intel devices, which are central processing units (CPUs), graphics processing units

(GPUs), digital signal processors (DSPs), field-programmable gate arrays (FPGAs) and other

processors or hardware accelerators. This platform greatly improves the speed and

responsiveness of a wide spectrum of applications in numerous market categories, including

finance computations. OpenCL is an open standard maintained by the non-profit technology

consortium Khronos Group. Conformant implementations are available from Altera, AMD, Apple,

ARM, Creative, IBM, Imagination, Intel, Nvidia, Qualcomm, Samsung, Vivante, Xilinx, and

ZiiLABS.

A single compute device typically consists of several compute units, which in turn comprise

multiple processing elements (PEs). A single kernel execution can run on all or many of the PEs

in parallel. Vendors subdivide compute device into compute units and PEs. Compute unit is

abstract of a “core”, because the notion of core is hard to define across all the types of supported

OpenCL devices. Also number of compute units may not correspond to the number of cores

claimed in vendor marketing literature. OpenCL Platform model is based on host device and one

or more compute devices. Another advantage is multi-GPU support, theoretically provides as

much more performance. For example, system with 8 same GPUs will provide 8 times faster than

3

one. The access of data between CPU and GPU is much faster, because unified memory

architecture. The GPU accelerated modules will provide at least 10 times faster calculation and it

is quite possible to achieve 200 times speed up depending of applied parallel algorithm

OpenCL defines an application programming interface (API) that allows programs running on the

host to launch kernels on the devices. Programs in the OpenCL language are intended to be

compiled at run-time. It helps applications to be portable between implementations for various

devices. Using the OpenCL API, developers can launch compute kernels written using a limited

subset of the C99 programming language. For example:

• in OpenCL kernel is not allowed usage of recursion;

• Memory buffers reside in specific levels of the memory hierarchy, and pointers are

annotated with the region qualifiers

• OpenCL C functions are marked __kernel to signal that they are entry points into the

program to be called from the host program

• Function pointers, bit fields and variable-length arrays are omitted

Advantages of GPU devices over CPU are:

• Faster memory;

• More cores;

• Singe instruction multiple threads (SIMT) technology

• Cheap computing power(greater ratio of work per time)

4

OpenCL in PMS

OpenCL Concept
Implementation of CreditMetrics-OpenCL module in PMS is separated in separated DLL, because

of better flexibility. Supported version for OpenCL driver is tested on version 1.2. Gathering data

between Credit metrics and OpenCL is accomplished by adapter pattern. Main goal for adapter

is get necessary data from PMS, like position and issuer data, and return MonteCarlo series from

OpenCL accelerated library. PMS is linked explicitly to OpenCL library, because of easily

management. To use this module, client must have OpenCL driver on GPU device. Currently

OpenCL module is supported only on GPU module.

Turning on OpenCL acceleration of CreditMetrics in PMS, is accomplished by checkbox in

CreditMetrics Panel. To use OpenCL you must set the OpenCLPlatform to desired choice in PMS

Configuration panel in section “Analysis” and Section “CreditMetrics”. Mostly used configuration

values for this configuration are:

• NVidia – for NVidia GPU’s with CUDA acceleration. In process of development we used

mostly NVidia GTX card. Version of OpenCL is 1.2;

• AMD – for AMD GPU’s or AMD Accelerated Processing Unit (APU)

• Intel – not recommended, mostly Intel GPUs perform slower than OpenMP acceleration.

PMS

CreditMetrics-

OpenCL adapter

OpenCL

Accelerated

Library

CreditMetrics

Module

Module…

Module…

CreditMetrics

Module

OpenCL Driver

GPU

5

OpenCL drivers can be checked by following several steps bellow:

1. Go to Start -> Control Panel -> System & Security - > Administrative Tools

2. Double click on Computer Management

3. Click on Device Manager

4. Click open Display Adapters

6

5. Right-click on available adapter and select Properties

6. Click on Driver

7. Go to Driver Details

7

8. Scroll down and see if OpenCL is installed (look for %OpenCL%.dll files)

8

If adapters there are not available adapters or DLL is missing, try with install/update the

graphic driver. Note: Do not install OpenCL drivers without first checking for known issues

(e.g., some computer manufacturers install modified graphics drivers so replacing these may

not be a good idea!). If in doubt, seek advice from an IT professional before proceeding further

9

OpenCL module initialization
In the lifecycle of one OpenCL module are needed preparations (figure N) before computations.

First of all is needed to select platform. If there are error with desired platform (1), simulation will

not start. For troubleshooting see section above. For now, module can compute with only one

device. Device is chosen automatically by platform. In most cases, most of clients has relation

one platform-one GPU device. Device can be represented by collection of compute units. With

other words, that is GPU.

ERROR SCREENSHOT

When the system index is found, next step is to create context (2). Context is used by OpenCL

runtime for managing command-queues, memory, program and kernel objects, that will be

explained later. Also context schedule devices for executing kernels. Next step Is to create

Find

device

Create

Context

Create

Command

Queue

Read

Source

Create

Program

restructured

source code Build

Program

1 2
3

4 5 6

10

command queue (3). It is object that holds commands that will be executed on specific device.

The command-queue is created on a specific device in a context. Command that are proceed

are queued in-order in module, but also can be executed out-of-order. Typically, in in-order

execution commands are executed in order of submission with each command running to

completion before the next one begins. In other case commands may begin and complete

execution in any order consistent with constrains imposed by event want list and command-

queue barrier. It this module is used only in-order executions. After this step is to read source

code (4). Source code of OpenCL module is separated, from PMS and module. It can be in

plain text file, binary file or like constant string object in source code of library. For security

purpose – source code of OpenCL is placed inline in source code of module. It cannot use the

PMS code, because of parallel reconstruction – will be explained bellow in kernel explanation.

Final preparation step is creating (5) and building program (6). Program in OpenCL consist set

of kernels. Programs may also contain auxiliary functions called by the __kernel functions and

constant data. OpenCL allows applications to create a program object using the program

source. Goal of this approach is the executable compiled/linked online as the program

executable. This can be very useful as it allows applications to load and build program

executables online on its first instance for appropriate OpenCL devices in the system. These

executables can now be queried and cached by the application. Program object encapsulates

the following information:

• A reference to an associated context

• A program source of binary

• The latest successfully built program executable. The list of devise for which the

program executable is build and also build option, that are used, and logs

• The number of kernel object currently attached

OpenCL Kernel execution
Kernel is a function declared in a program and executed on an OpenCL device. A kernel is

identified by the __kernel qualifier applied to any function defined in a program. Kernel object

encapsulates a specific __kernel function declared in program and the argument values to be

used when executing it. In followed text bellow will be explained in details kernel preparation and

execution of “Generation of random numbers” stage. First of all is need to release previous kernel

and create a new one from program. Next step is go get information for kernel execution work

items – work groups and local groups.

if (m_ckKernel != nullptr) //check if kernel exist
 {
 // release previous kernel
 s_clError = clReleaseKernel(m_ckKernel);
 }
 // create new kernel from program with name and error code for status
 m_ckKernel = clCreateKernel(m_cpProgram, "init", &s_clError);
 //if all is success continue execution else return and log error

if (check_error("cannot create kernel")) return;

An instance of the kernel executes for each point in index space, which provides a global ID for

the work item. Each work-item executes the same code but the specific pathway through the

code. Work items are organized into work groups. Work groups provide a more coarse-gained

decomposition of index space. They are assigned to a unique work-group ID with the same

dimensionality as the index space. Work items are assigned to a unique local ID within a work-

11

group, so that a single work item can be uniquely identified by its global ID or by combination of

local ID and work group ID. The work item in a given group execute concurrently on the processing

element of a single compute unit. Getting the optimal number of work items are key to gain

maximum performance.

OpenCL provide a method, which gives an optimal workgroup and multiplier. Also module

provides one more multiplier for high performance GPUs. Code bellow will create memory

object for random number with rights for read and write, with size of variable number of

randoms.

cl_mem memRes = clCreateBuffer(m_cxContext, CL_MEM_READ_WRITE, (m_uNumberOfRands)

*sizeof(cl_double), NULL, &s_clError);

In OpenCL work items executing a kernel have access to four distinct memory regions:

• Global memory – this memory region permits read/write access to all work groups. Work

items can read or write to any element of a memory object. Reads and writes to global

memory may be cached depending on the capabilities of the device;

• Constant memory – this memory region of global memory, which remains constant

during the execution of a kernel. The host allocates and initializes memory objects

placed into constant memory;

• Local memory – this memory region is local to a work group. It can be used to allocate

variables that are shared by all work items in that work group. Mau be implemented as

dedicated regions of memory on the device. With other words, the memory regions may

be mapped onto sections of the global memory;

• Private memory - a region of memory per work item. Variables defined in one work items

private memory are not visible to another work item

HOST
Work group

Work-item

12

After getting the optimal work size, next step is to create memory objects for input and output

parameters. In OpenCL kernel parameter can be only pointers or complex objects. Also all types

of data must be in CL notation. If memory allocation, input buffer should be initialized. Initialization

is by coping the data from HOST device to Device. That is needed, because of memory difference

between CPU and GPU. In some cases, buffers are so big and it is needed synchronization of

command queue. After writing and filling the parameters they should be assigned to kernel.

s_clError = clSetKernelArg(m_ckKernel, 0, sizeof(cl_mem), (void *)&memRes);

 Last step is to enqueue task or with other word invoke the function. Here generation is

accomplished apart. It is developed that way, because of TDR.

//calculatin limit per execution and optimal steps
m_confData.itersPerCore = l_limit / m_workgroup_size;
size_t ls_globalIters = (ceilf((float)(m_uNumberOfRands)/l_limit));
for (size_t i = 0; i < ls_globalIters; i++)
{
 //moving the start cursor
 m_confData.startIter = i*l_limit;
 //write configuration stucture
 s_clError = clEnqueueWriteBuffer(m_cqCommandQueue, m_memConfData,
 CL_TRUE,0, sizeof(confDataOCL), &m_confData, 0, NULL, NULL);
 //enqueue task
 s_clError = clEnqueueNDRangeKernel(m_cqCommandQueue, m_ckKernel, 1,
 NULL, &m_workgroup_size, &m_local_item_size, 0, NULL, NULL);
 //synchronize
 s_clError = clFinish(m_cqCommandQueue);
}

Then if necessary copy the needed data to Host memory and release memory objects.

s_clError = clEnqueueReadBuffer(m_cqCommandQueue, memRes, CL_TRUE, 0, (m_uNumberOfRands)

* sizeof(cl_double), l_result, 0, NULL, NULL);

At the end it need to release unnecessary data.

13

s_clError = clReleaseMemObject(memStates);

Module data flow

Basic concept for OpenCL modules is to get minimal data input result and return result. Before

calculation PMS gives name of platform, which is stored in PMS configuration. In OpenCL library,

there is a class for information. It has basic role to find desired platform and device, by the given

name. If there are not available platforms or configuration name is incorrect, library will return

error status, analysis will not be proceeded. Data flow between PMS CreditMetrics and OpenCL

module is accomplished via adapter, which main role is to get and pass number of runs,

correlation matrix, positon data and issuer data to DLL. Then library create buffers, copy needed

data and build kernels. Just like was explained above, OpenCL module build code in runtime.

That means source code is read and compiled, and then calculations will be started. Advantage

of GPU is that it can take big data flows, because of good bandwidth. The less heavy part of

algorithm is to generate random number and apply correlations. To get better results it needed

this data to be corrected for zero correlation and perfect normal distributed form – standard

deviation should be around 1.0 and mean 0.0. Then random numbers are applied by correlation

matrix. Because of timers of some operation systems, e.g. Timeout Detection and Recovery

(TDR) – which is problem of stability in graphic occurs when a computer “hangs” or appears

completely “frozen”, while, in reality, it processing command or operations. The frozen

appearance of the computer typically occurs because the GPU is busy processing intensive

graphical operations, typically during game play. The GPU does not update the display screen,

and the computer appears frozen. It is busy because of computations. Because of that problem

OpenCL generates random number apart. Random number matrix stays in GPU memory until

GPU

OpenCL Accelerated library

PMS

CreditMetrics

Module

CRM

OpenCL

adapter

Random

matrix

OpenCL info

class

Correlation

matrix

Portfolio Series

Issuer Series

Positon Series

OpenCL Credit

Metrix Module

CreditMetrics

OpenCL

restructured

source code

MonteCarlo

Results

Σ

Runs

Position Data

Issuer Data

8

1

2 3

4

5 6

7

14

analysis is finished. It most cases it takes the biggest part in memory distribution. MonteCarlo

series are computed apart too.

As it was mention before, in OpenCL cannot exist object oriented principles. To accomplish credit

metrics analysis first its needed to rewrite code for objects – analysis controller objects, as known

as “configuration object”, model for issuer and position. In configuration object are common data

for analysis, including:

• Runs;

• Dimensions;

• Issuer number;

• Start iterator – for kernels, that are executed apart;

• Include interpolation flag;

• Using single PD flag;

• Iterators per core (work item);

Members of structure for issuer are:

• Synthetic value;

• Synthetic volatility;

• No indices flag;

• Number of rating per issuer

• Used RR

• Beta distribution values

• Constant beta value

• Theshold values;

Members of structure for position are:

• Valid position;

• The first exposure;

• Rating values table;

• Collateral Absolute Value

• Collateral Coverage

15

Algorithm workflow

The algorithm schedule is separated in 2 main part generation of random series and calculations

of Monte carlo simulation. In the start is initialization of OpenCL module. Then generation of

random number module is enquired. Generation of random number is based on “XOR Shift“

Algorithm. This is pseudorandom number generators that were discovered by George Marsaglia.

They are a subset of linear-feedback shift registers (LFSRs) which allow a particularly efficient

implementation without using excessively sparse polynomials. They generate the next number in

their sequence by repeatedly taking the exclusive or of a number with a bit-shifted version of itself.

This makes them extremely fast on modern computer architectures. Like all LFSRs, the

parameters have to be chosen very carefully in order to achieve a long period. Xorshift generators

are among the fastest non-cryptographically-secure random number generators, requiring very

small code and state. Although they do not pass every statistical test without further refinement,

this weakness is well-known and easily amended (as pointed out by Marsaglia in the original

paper) by combining them with a non-linear function. A xorshift* generator takes a xorshift

generator and applies an invertible multiplication (modulo the word size) to its output as a non-

linear transformation, as suggested by Marsaglia. The following 64-bit generator with 64 bits of

state has a maximal period of 264 − 1

__private double xorshift64star(__global uint* state64) {

Initialize Generate Random

numbers

Copy generated

random numbers

Zero correlation

correction

Distribution

correction for form

Apply Correlation

matrix

Create free random

series

Pass issuer and

position data

Calculate Volatility

Issuer matrix

Calculate Monte

Carlo series

Group result
Return result to

PMS

HOST DEVICE

16

 size_t x = state64[0]; /* The state must be seeded with a nonzero value. */

 x ^= x >> 12; // a

 x ^= x << 25; // b

 x ^= x >> 27; // c

 state64[0] = x;

 return convert_double(x * 0x2545F4914F6CDD1D) / 0xffffffffffffffff;

}

For states each work group has own states. By default, seeds are based to be equally every simulation.

//all kernel functions must return void

__kernel void initLight(__global double *res, //matrix cannot be presented by 2 dimensons

 __global uint* stateUint,

 __global confDataOCL* pConfData)

{

 int idx = get_global_id(0); //get index of current core

 int g_size = convert_int(get_global_size(0)); //get number of all cores

 int j = 0;

 //private variables keyword __private is by default, like other languages

 double v1, v2,s, m;

 // iterations per core are set by Host

 for (j = 0; j <convert_int(pConfData[0].itersPerCore); j++){

 if(

 (j*g_size +idx + pConfData[0].startIter)>=

 ((pConfData[0].dimensions) * pConfData[0].runs))

 {

 break;

 }

 do {

 v1 = 2.0*xorshift64star(stateUint+5*idx)-1;

 v2 = 2.0*xorshift64star(stateUint+5*idx)-1;

 s=v1*v1+v2*v2;

 }

 while (s>=1.0);

 m=sqrt(-2.0*log(s)/s);

 //each result is placed by core index

 res[idx + j*g_size + pConfData[0].startIter] = v1*m;

 }

 return;

}

Next step of simulation is distribution correction. Distribution correction is separated in 3 parts –

pre-distribution correction, bitonic sort and postdistribution correction. In the section bellow will be

presented code reconstruction in details of distribution correction algorithm.

Because of thread concurrency, some fragments in module are reconstructed. It is not fully code

duplication of source code. In PMS distribution correction of normal distribution is accomplished

by one single function. OpenCL approach is different. The idea of correction is to apply

transformation of series to commutative distributed series. Then sort it, but keeping the original

order, adjust series by order number and return it back to normal distribution and original order.

distributionCorrection(double* p_pSeries,

 size_type p_Runs,

17

 size_type p_Dim)

{

 const size_type br = p_Runs;

 // array for storing the order of series

 int* l_vOrd = new int[br];

 double l_dOff = (double)1/(double)br;

 double l_dST = (double)1/(double)br/2.0;

 int i, j;

 for(j = 0; j < p_Dim; j++)

 {

#pragma omp parallel for shared(i, j, l_vOrd)

 for(i = 0; i < br; i++)

 {

 p_pSeries[j + i * p_Dim] =

 Normal::cdf(p_pSeries[j + i * p_Dim]);

 }

#pragma omp parallel for shared(i, j, l_vOrd)

 for(i = 0; i < br; i++)

 {

 l_vOrd[i] = i;

 }

To gain better performance in OpenCL first stage of distribution correction is merged for all

dimensions. Action between all series values are independent. This is perfectly suitable for

massive parallel work. Each work item will apply cumulative distribution function on several series

values for all dimensions. At the final of this stage will be created orders. Orders are from zero to

number of runs. Because of sorting algorithm, which is sorting behavior is better, when numbers

are grade of 2, is added fake transformation of needless number. With other words, used

technology is state-full. As opposed to OpenMP, OpenCL paralelism is strictly defined. Each

compute unit will compute several values, there are not available concurrency. This is one more

reason for rewriting and reconstruction code. CDF function is and probability distribution function

are private, with other words each work group will execute own instance of function.

__kernel void preDistributionCorrection(__global double* p_pSeries, __global confDataOCL*

pConfData, __global int* orders)

{

 uint localId = get_local_id(0);

 int idx = get_global_id(0);

 int globalSize = convert_int(get_global_size(0));

 int currIndex;

 for (int d = 0; d<(pConfData[0].dimensions); d++)

 {

 for (int i = 0 ; i <pConfData[0].itersPerCore; i++)

 {

 if((idx*pConfData[0].itersPerCore+i)>=pConfData[0].runs)

 {

 p_pSeries[currIndex] = 2.0;

 continue;

 }

18

 currIndex =d+(idx*pConfData[0].itersPerCore+i)*(pConfData[0].dimensions);

 p_pSeries[currIndex]=cdf(p_pSeries[currIndex]);

 orders[idx*pConfData[0].itersPerCore+i] = idx*pConfData[0].itersPerCore+i;

 }

 }

}

After applying CDF and creating order array, next part is sorting. In PMS is used quick sort with

sorting values in pair with order. Quick sort cannot be applied in parallel. Possible approach is to

sort apart, but it will be needed more time for merging sub arrays. Another problem is that

quicksort is recursion and stack based, which cannot fit in OpenCL library. To sort series in

OpenCL kernels, we found a suitable algorithm for massive parallel work and transform it to work

with pairs. Sort algorithm is known as Bitonic Sort. Bitonic mergesort is a parallel algorithm for

sorting. It is also used as a construction method for building a sorting network. The algorithm was

devised by Ken Batcher. The following is a bitonic sorting network with 16 inputs:

The 16 numbers enter at the inputs at the left end, slide along each of the 16 horizontal wires,

and exit at the outputs at the right end. The network is designed to sort the elements, with the

largest number at the bottom.

The arrows are comparators. Whenever two numbers reach the two ends of an arrow, they are

compared to ensure that the arrow points toward the larger number. If they are out of order, they

are swapped. The colored boxes are just for illustration and have no effect on the algorithm. If the

inputs happen to form a bitonic sequence, then the output will form two bitonic sequences. The

top half of the output will be bitonic, and the bottom half will be bitonic, with every element of the

top half less than or equal to every element of the bottom half (for dark red) or vice versa (for light

red). This theorem is not obvious, but can be verified by carefully considering all the cases of how

the various inputs might compare, using the zero-one principle. The red boxes combine to form

blue and green boxes. Every such box has the same structure: a red box is applied to the entire

input sequence, then to each half of the result, then to each half of each of those results, and so

on. All arrows point down (blue) or all point up (green). This structure is known as a butterfly

network. If the input to this box happens to be bitonic, then the output will be completely sorted in

increasing order (blue) or decreasing order (green). If a number enters the blue or green box,

then the first red box will sort it into the correct half of the list. It will then pass through a smaller

red box that sorts it into the correct quarter of the list within that half. This continues until it is

sorted into exactly the correct position. Therefore, the output of the green or blue box will be

completely sorted.

19

Bitonic Sort host code:

for (indecies[1] = 2; indecies[1] <= lRuns; indecies[1] <<= 1)

{

 /* Minor step */

 for (indecies[0] = indecies[1] >> 1; indecies[0]>0; indecies[0] = indecies[0] >> 1) {

 //bitonic_sort_step << <blocks, threads >> >(dev_values, j, k);

 s_clError += clEnqueueNDRangeKernel(m_cqCommandQueue, m_ckBitonicSortKernel, 1, NULL,

&m_workgroup_size, &localGroups, 0, NULL, NULL);

 s_clError += clFinish(m_cqCommandQueue);

 s_clError += clEnqueueWriteBuffer(m_cqCommandQueue, cl_inc, CL_TRUE, 0,

sizeof(cl_uint) *INDECIES_ARR_SIZE, indecies, 0, NULL, NULL);

 }

}

Bitonic Sort device code:

__kernel void bitonicSortStep(__global double* dev_values, __global int* indecies, __global

int* orders)

{

 uint localId = get_local_id(0);

 uint globalId = get_global_id(0);

 uint groupSize = get_global_size(0);

 //int core = (localId + globalId*groupSize);

 for (uint idx = 0 ; idx < indecies[2]; idx++)

 {

 uint i, ixj,o,oxj; /* Sorting partners: i and ixj */

 i =globalId + idx*groupSize;

 //i = o*indecies[5] + indecies[4];

 ixj = i^indecies[0];

 //oxj = o^indecies[0];

 if (oxj > indecies[3]){

 continue;

 }

 if ((ixj) > i) {

 if ((i&indecies[1]) == 0) {

 /* Sort ascending */

 if (dev_values[i*indecies[5] + indecies[4]] > dev_values[ixj*indecies[5] +

indecies[4]]) {

 /* exchange(i,ixj); */

 double temp = dev_values[i*indecies[5] + indecies[4]];

 dev_values[i*indecies[5] + indecies[4]] = dev_values[ixj*indecies[5] +

indecies[4]];

 dev_values[ixj*indecies[5] + indecies[4]] =temp;

 //XOR swap

 orders[i]^= orders[ixj];

 orders[ixj]^=orders[i];

 orders[i]^= orders[ixj];

 }

 }

 if ((i&indecies[1]) != 0) {

 /* Sort descending */

20

 if (dev_values[i*indecies[5] + indecies[4]] < dev_values[ixj*indecies[5] +

indecies[4]]) {

 /* exchange(i,ixj); */

 double temp = dev_values[i*indecies[5] + indecies[4]];

 dev_values[i*indecies[5] + indecies[4]] = dev_values[ixj*indecies[5] +

indecies[4]];

 dev_values[ixj*indecies[5] + indecies[4]] = temp;

 //XOR swap

 orders[i]^= orders[ixj];

 orders[ixj]^=orders[i];

 orders[i]^= orders[ixj];

 }

 }

 }

 }

}

Final step of distribution correction is to apply correction to commutative values and inverse it to

normal distributed values and return it to initial order to restore original correlation between

dimensions. Code is modeled just like first stage of correction. Each work item compute inverse

CDF and restore the order. For inverse commutative is used alternative approach. Main goal is

performance. It uses approximation based on polynomial coefficients.

double icdf(double p)

{

 const double a1 = -39.69683028665376;

 const double a2 = 220.9460984245205;

 const double a3 = -275.9285104469687;

 const double a4 = 138.3577518672690;

 const double a5 = -30.66479806614716;

 const double a6 = 2.506628277459239;

 const double b1 = -54.47609879822406;

 const double b2 = 161.5858368580409;

 const double b3 = -155.6989798598866;

 const double b4 = 66.80131188771972;

 const double b5 = -13.28068155288572;

 const double c1 = -0.007784894002430293;

 const double c2 = -0.3223964580411365;

 const double c3 = -2.400758277161838;

 const double c4 = -2.549732539343734;

 const double c5 = 4.374664141464968;

 const double c6 = 2.938163982698783;

 const double d1 = 0.007784695709041462;

 const double d2 = 0.3224671290700398;

 const double d3 = 2.445134137142996;

 const double d4 = 3.754408661907416;

 //Define break-points.

21

 const double p_low = 0.02425;

 double p_high = 1 - p_low;

 double q, r, e, u;

 double x = 0.0;

 //Rational approximation for lower region.

 if (0 < p && p < p_low) {

 q = sqrt(-2 * log(p));

 x = (((((c1*q + c2)*q + c3)*q + c4)*q + c5)*q + c6) / ((((d1*q + d2)*q + d3)*q + d4)*q

+ 1);

 }

 if (p_low <= p && p <= p_high) {

 q = p - 0.5;

 r = q*q;

 x = (((((a1*r + a2)*r + a3)*r + a4)*r + a5)*r + a6)*q / (((((b1*r + b2)*r + b3)*r +

b4)*r + b5)*r + 1);

 }

 if (p_high < p && p < 1) {

 q = sqrt(-2 * log(1 - p));

 x = -(((((c1*q + c2)*q + c3)*q + c4)*q + c5)*q + c6) / ((((d1*q + d2)*q + d3)*q +

d4)*q + 1);

 }

 //Pseudo-code algorithm for refinement

 if ((0 < p) && (p < 1)) {

 e = 0.5 * erfc(-x / 1.41421356237) - p;

 u = e * sqrt(2 * 3.14159265359) * exp(x*x / 2);

 x = x - u / (1 + x*u / 2);

 }

 return x;

}

The main reason for this separation, is lack of memory. Performance is slower, memory for GPU

is limited. High class GPU has around 8-12 GB. First algorithm calculates the volatility series for

issuer and runs, then value for position. This is repeated until is not reached end of input series

matrix. After each calculation of position series, work items are synchronized.

Calculate

Volatility Series

per issuer

Calc monte carlo

position series

Calc monte carlo

position series

time

Calculate

Volatility Series

per issuer
sync sync

22

Monte carlo simulation Host code:

for (int i = 0; i <l_iters;i++)

{

 //reset result aggregation buffers to 0 values

 s_clError = clEnqueueFillBuffer(m_cqCommandQueue, l_memResult, &initValue,

sizeof(cl_double), 0, sizeGrid * sizeof(cl_double), 0, NULL, NULL);

 s_clError = clEnqueueFillBuffer(m_cqCommandQueue, l_memIssuerResult, &initValue,

sizeof(cl_double), 0, (m_confData.issuerNumber*sizeGrid) * sizeof(cl_double), 0, NULL, NULL);

 s_clError = clEnqueueFillBuffer(m_cqCommandQueue, l_memPositionResult, &initValue,

sizeof(cl_double), 0, (m_confData.positionNumber*sizeGrid) * sizeof(cl_double), 0, NULL,

NULL);

 //invoke function for vola series

 s_clError = clEnqueueNDRangeKernel(m_cqCommandQueue, m_ckKernel, 1, NULL, &sizeGrid,

&m_local_item_size, 0, NULL, NULL);

 if (check_error("cannot finish kernel in calctrue mc vola issuers")) return;

 //invoke function for MC resutls

 s_clError = clEnqueueNDRangeKernel(m_cqCommandQueue, l_ckMcKernel, 1, NULL, &sizeGrid,

&m_local_item_size, 0, NULL, NULL);

 s_clError = clFinish(m_cqCommandQueue);

 if (check_error("cannot finish kernel in MC calc")) return;

 //copy resut to host memory

 s_clError = clEnqueueReadBuffer(m_cqCommandQueue, l_memResult, CL_TRUE, 0, (finalRuns)*

sizeof(cl_double), p_dbResultPtr + sizeGrid*i, 0, NULL, NULL);

 s_clError = clEnqueueReadBuffer(m_cqCommandQueue, l_memIssuerResult, CL_TRUE, 0,

(m_confData.issuerNumber*finalRuns) * sizeof(cl_double), p_dbIssuerResultPtr + sizeGrid*i, 0,

NULL, NULL);

 s_clError = clEnqueueReadBuffer(m_cqCommandQueue, l_memPositionResult, CL_TRUE, 0,

(m_confData.positionNumber*finalRuns) * sizeof(cl_double), p_dbPositionResultPtr + sizeGrid*i,

0, NULL, NULL);

 s_clError = clFinish(m_cqCommandQueue);

}

Reconstruction in code for Monte Carlo run simulation is based on changed structures and results.

Another point is linear presentation of 2 dimensional array.

Performance & benchmarks
Performance aspects is accomplished as expected. On single position OpenCL perform up to 270

times faster than CPU multithreaded approach. Machines CPU is intel i7 6700 – 4 threads, 8

cores. Result are shown below.

runs mc
calculations

gpu mc
calculations

mc
calculation
speed up

100000 2816 19 148

200000 5007 24 209

500000 14651 53 276

23

1000000 27699 101 274

2000000 53391 206 259

5000000 131958 513 257

10000000 280155 1023 274

20000000 530500 2032 261

Performance is getting slower by increasing positions and dimensions. At 275 positions and 55

dimension we get improved time. We try this test with medium range GPU - NVidia GTX 1070

and laptop GPU – NVidia 960m. From hardware specification GTX 1070 has 1920 cores and 960

has 640. This means approximates 3 times faster calculations. Because of software and driver

issues we expect GTX 1070 get 2.5 times faster than 960m. Results are shown below.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

100000 200000 500000

ti
m

e(
m

s)

Runs

mc calculations gpu mc calculations gpu mc calculations gtx1070

24

runs
mc

calculations

GTX960M
mc

calculations

GTX1070 mc
calculations

Speed up
CPU/GTX960m

Speed up
CPU/GTX1070

100000 15582 2379 881 6.549810845 17.68671964

200000 36234 4160 1519 8.710096154 23.85385122

500000 88262 9563 3498 9.229530482 25.23213265

Algorithm is also faster in generating random series ND(0,1) and applying correlation. In the

diagram bellow are shown benchmarks.

Future development
Real time risk management is a problem for financial industry today, with pushing GPU computing

would provide faster analysis. GPUs are used by major financial institutions for quant finance.

Performance gains will be at least 10x “dollar for dollar”. This will provide finance software to take

advantage of the advances in many-core hardware.

Future suitable development algorithms:

• Longstaff-Schwartz method on GPU

• Monte Carlo VaR

• Stochastic Volatility Modeling

• Large-Scale Interest-Rate Swaps Risk

• Derivatives simulation, ABS/SPV simulation

• Complex EOT simulation

0

5000

10000

15000

20000

25000

100000 200000 500000 1000000 2000000 5000000

Ti
m

e(
m

s)

Random nubers

rands generation & corrections gpu rands generation & corrections

