

1

Реализация на динамична структура на приложение в интерактивна среда

 Implementation of a Dynamic Application Structure in a Real Time Framework

Samuil Nikolov, Аnatoliy Antonov

Резюме: Статията представя проучванията на авторите върху теортичния модел и

разработването на система върху която е разработена интерактивна среда за динамично

управление на приложенията. Разгледан е граф, представящ структурата на скриптово-базирано

приложение. Представени са правила за промяна на структурата и начини за динамично

генериране. Показани са принципите за създаване на вътрешната структура на базата на

шаблони. Демонстриран е пример за динамично създаване на система за контрол на достъпа до

приложението.

Ключови думи: Управление на динамични приложения, Среда за създаване на приложения,

Създаване на динамична структура

Abstract: The paper presents the authors’ research on the theoretical model and experience in

implementing a real system, on which a framework for dynamic application control is based. A graph is

considered, representing the structure of scripts- based application. Rules for modifying its structure and

ways of dynamic generation are discussed. Principles for building the internal structure of the subtasks

are shown, based on object identifiers and template instances. An example application is demonstrated

showing how to create dynamically user access control.

Keywords: Dynamic application control, Application framework, Creation of dynamic system structure

І. INTRODUCTION

Specific software applications have one major

disadvantage – their functionality is highly

limited by the area for which they have been

developed. The complexity of computer and

communication systems makes it difficult for

even the original system developers to

analyze, model, or predict system behavior,

let alone anticipate the emergent behavior of

multiple interacting systems [9]. Often an

entirely new project is needed for the

development of software with similar tasks in

real life and most of the working code has to

be rewritten just because of minor specifics

that come to be crucial for the entire work of

the program and its usefulness in other cases.

Building executable models need theory,

methods, and tools for modeling complex

heterogeneous systems [1]. During the

development of software technologies,

several ways of reusing program code were

developed [3]. One of them is the

development of libraries with compiled code,

containing a set of functions with general

purpose, that could be linked either directly to

the code of the developed

Application (statically linked libraries) or

used and distributed from the program as

separate files (dynamically linked libraries)

[4], [5]. Other way of reuse is supporting and

distribution of software code, in most cases as

open source in internet [8]. The disadvantage

in this way of reuse is that the code is

language-specific. A third option of faster and

effective development is the development of

general-purpose programs – frameworks -

that are used as a base for specific

applications. Usually they are created by

supplying small script-language files [2], [6]

that define the specific purpose of the final

application. This publication presents the

principles of one such commercial

framework. Every application developed with

the framework is constructed from

subsystems (modules) that represent subtasks

from the main problem to be solved. The

subsystems contain dynamic lists of object

identifiers (items) and have a dynamic set of

associated templates (script models) that can

be applied to every one of them. Every

template defines user interface and business

logic that helps to serve one of the purposes

2

of the application [5], [7]. The connection

between the subtasks – the plan of their

execution is dynamically carried out by the

framework according to the script, predefined

in the templates. The execution path is a

result of certain end-user actions on the

dynamically generated user interface.

ІІ. DYNAMIC APPLICATION

STRUCTURE

Every user-defined application over the

framework can be examined as a graph G,

which nodes are the structural subsystems

(modules). They are linked dynamically by

control transitions that supply a list of object

identifiers and a list of models that can be

applied to them.

G = { N , E }, where (1)

N = { S1, S2, .. , Sn } – set of subsystems Si

E = { <Si , Sj, ItemListk > | i ≠ j} – set of
connections

By allowing changes to the subsystems

and their connections, the framework

provides means for creating flexible and easy

to modify applications.

| E | ≠ const (2)

| N | ≠ const

Figure 1 represents a system, comprised
from three subsystems – S1, S2 ,S3, with their
associated lists of models and lists of items.

N={ System, S1, S2, S3} (3)

E={ <System, S1, [Item1.1, Item1.2,
Item1.3]>,

<System, S2, [Item2.1,Item2.2]>,

<System, S3,[Item3.1,Item3.2,Item3.3]>,

<S3, S2, [Item2.1,Item2.2]>,

<S2, S1, [Item1.1,Item1.2,Item1.3]> }

Figure 1. Example structure of a system

The initial node of the graph is the reserved

subsystem System, containing one reserved

identifier - System – the starting point for

application execution. It is used to instantiate

the models that will control the further

operation of the subsystems and their

interaction with one another.

1. Definition of a subsystem

Every subsystem contains a list of object

identifiers that are connected to the actual

problem being solved by the subsystem. It has

a variable set of templates that are associated

with it. The set of templates can be extended

during application development.

S = { Ei , Mj | i= 1..n, j= 1..m}

Ei – object identifier (a string) (4)

Mj – model template

The end user can add, remove and modify the

list of identifiers. Modifying it means

instantiating a new model from the supplied

list for a certain identifier and filling the

model’s data with new values.

3

2. Dynamic changes to the

application structure

New subsystems can be created dynamically

by adding items to the subsystems set and

connecting them by changing the set of edges.

Figure 2. Adding a subsystem Sl to Si and Sm

• The process of adding subsystems is

controlled by script variables, activated by

the end user. Usually these are

represented by simple UI checkboxes;

• Associating new connections between the

subsystems consists of predefining the

variables controlling the subsystem

transitions;

• Deleting a subsystem is done by deleting

it from the set and removing all the
connections leading to and from it

3. Template (model script)

The template defines a context for every

object identifier, supplied to the subsystem

and contains the following elements:

• definition of the user interface of a
concrete subsystem task;

• a set of variables, associated to the

user interface items that the end user

can input into:

V = { Vi | i = 1..n } ; (5)

• a set of rules F for changing the values

of the variables:

P = { Pi | i = 1..k } (6)

Every rule has the following form:

Vi  F (V1, V2 ... Vn), (7)

where Vi belongs to the set of variables;

• Rules for modification of user
interface. They allow changing the

appearance of user controls on the

screen including hiding, showing,

changing read only status etc. [6] The

means for designing and generating

the user interface, associated to the

template is not subject of the current

publication;

• Rules for transition to another

subsystem . They allow designing

the transition from the current

subsystem to another one(Si) or to the

same subsystem under different

conditions – like another list of

associated items:

 (Si, [Item1,Item2,...,Itemn])

Si  { S1, S2, .., Sn } (8)

The end user is able to create new

instances of templates for every identifier and

input data in them concerning either the

specific task of the subsystem, or preparations

for transition to another subsystem.

4. Creating the structure of an example

application

To illustrate the principles of creating and

dynamically controlling subsystems, we will

present the application defining the user

access to the framework. All applications start

from a common root subsystem – System,

containing single item – RFW System. The

application itself consists of two subsystems –

registering user roles and registering users:

4

Figure 3. Structure of the example application

for defining access control

To define the new user access control

application, a specifically designed template –

Register template, is supplied that defines the

transitions and an entry point for the

application. An instance of this template is

created for the item RFW System, called

“Registers in Framework” (Figure 4).

Figure 4. Initial subsystem

The Register template defines two user

interface tables – a list of users and a list of

user roles. On Figures 5 and 6 are shown

table contents after adding the instance and

opening it for input:

Figure 5. Table containing a list of users

Figure 6. Table containing list of user roles

Both tables are user-extendable, i.e. the end

user can add new lines to them and input the

ids, names and other optional descriptions for

both users and roles. This initial template

model is used by the system administrator to

specify the users after installation.

All template instances are persisted in a data

base. The tables used are designed in such a

manner as to reflect the flexibility of the

framework system, but their description is not

subject to the current publication.

From application-structure point of view there

are four essential variables V1-V4:

• V1 – a list of user identifiers, linked to
the table’s column

• V2 – active interface control, used to

trigger the connection between the
main subsystem System and the Users
Subsystem.

• V3 – a list of role identifiers, linked to
the table’s column

• V4 - active interface control, used to
trigger the connection between the
main subsystem System and the Roles
Subsystem.

Besides the user interface definition, the

template also contains definitions of transition

rules:

 (User Subsystem, [V1]) (9)

 (Role Subsystem, [V3])

If V2 is activated, the framework will

transfer the control to the User Subsystem
using the list of user identifiers V1. The same

approach is used when activating the Role
Subsystem transition rule.

Each of the two subsystems has an associated

template. The role definition template (see

figure 3) contains a set of interface elements

(in this case checkboxes), allowing the

selection of different actions that are allowed

for the specifically defined role. Those can be

any set that could be interpreted during the

usage of the security system, for example

(Figure 7):

5

Figure 7. Possible access rights that can be

defined in the framework

It is fully extendable, i.e. any access type that

is interpretable by the framework can be

included just by adding a check box to the

template model script. The template also

contains other role definition data like tables

for specifying a subset of modules for which

the access rights are valid, if such restrictions

are necessary. When the Role Subsystem

transition rule (9) is fired, on user activation

of the V4 element (Figure 6), the initial

subsystem System transfers control to the

Role Subsystem and the role identifiers are

supplied as framework items. For every item,

it is possible to create a definition – template

instance that will specify what the role can or

cannot perform in the system (Figure 8):

Figure 8. List of identifiers for the Role

Subsystem with specific instances of the Role

definition template

Each template instance is persisted with

different combination of checked checkboxes

to reflect the specific role access rights.

The other template, for the User Subsystem

consists of a user interface table (Figure 9)

with role identifiers and a field for entering

the user’s password:

Figure 9. UI of the template for user

definition

The table is filled from the persistent source

with the role data model instances that have

been defined in the Role Subsystem. The

table has a column of checkboxes that allow

the administrator to select the desired roles

for the user being defined.

Similarly, to the Role Subsystem transition,

when the user activates the V2 element, the

initial subsystem System transfers control to
the User Subsystem and the user identifiers

that were inserted in the users table (Figure 5)

are set as items and can be defined by
instantiating user definition templates for

each one of them:

Figure 10. List of identifiers for the User

Subsystem with specific instances of the User

Definition template

The template instances are filled and persisted

for every user with his own, unique,

combination of roles. Thus, every user that

logs on the system has a defined set of actions

allowed or denied.

ІІІ. CONCLUSIONS AND FUTURE

WORK

The principles of creating the described

framework show the possibilities of more

direct and quick design and realization of

projects and their execution in a universal

medium. The building blocks of the project,

the subtasks that are defined, can be linked

dynamically thus solving the common task.

Every subtask can associate a list of object

6

identifiers and a list of models that can be

used to define the solution of the specific

problem. The described approach was used by

the authors to build various applications. A

more complex example of such is a financial

portfolio evaluation application that consists

of subsystems for defining stock indexes,

instruments, positions, portfolio filters,

portfolio lists, the portfolios themselves as

well as a subsystem for applying various

analyses on the defined portfolios. They all

work together by using each other’s data

stored in the database, where the defined

instruments use the data about the stock

indexes, the defined portfolios use data from

filters and lists to select various dynamic

instrument subsets as their members and the

analysis modules use the data stored for

portfolios to evaluate and optimize the

expected profits.

ЛИТЕРАТУРА:

[1] Edmund M. Clarke, E. Allen Emerson, and Joseph

Sifakis Model Checking: Algorithmic Verification and

Debugging, Communications of the ACM, november

2009, Vol. 52(11): 75-84

[2] Giarratano, Joseph C., Ph.D. CLIPS User’s guide

Version 6.20, March 31st, 2002

[3] McConnel, Steve, Rapid Development: Taming

Wild Software Schedules,1996

[4] Meyer, Bertrand, Reusable Software: The Base

Object-Oriented Component Libraries, Prentice Hall,

1994

[5] Microsoft MSDN

[6] Paskalev Pl., Nikolov Vl. , Multi-platform, script-

based user interface, CompSysTech, 2004

[7] Richter, Jeffrey, Applied Microsoft .NET

Framework Programming, Microsoft Press, 2002
[8] http://en.wikipedia.org/wiki/Open_source_software

[9] JEANNETTE M. WING FIVE DEEP

QUESTIONS IN COMPUTING, Communications of

the ACM, january 2008, Vol. 51(1): 58-61

За контакти:

Инж. Самуил Николов

 д-р Анатолий Антонов

 Еврориск Системи ООД

 9002 Варна, ул. “Генерал Киселов “31

 e-mail: antonov at eurorisksystems dot com

Рецензент:

доц. д-р. инж. Елена Рачева- ТУ-Варна

http://en.wikipedia.org/wiki/Open_source_software

