

1

Implementation of a Multilayer Perceptron in the Graphics

Processing Unit

Ventsislav Nikolov

Abstract. In this paper, a parallel realization of a multilayer neural network in a Graphics Processing Unit

(GPU) is presented. There are different types and architectures of neural networks, but most of them are known

as models that strongly incorporate fine-grained parallelism. This is highly applicable to GPUs, which contain

a large number of simple Streaming Multiprocessors. The realization is based on Compute Unified Device

Architecture which is an extension to the C language that allows GPU code to be written in regular C. Perfor-

mances are represented according to the time required for the execution of sequential and parallel implemen-

tations. Conclusions and future developments are introduced at the end of the paper.

Keywords: Parallel Neural Network, Graphics Processing Unit, Compute Unified Device Architecture

1 INTRODUCTION

Often in computer technologies methods are used based on exact calculations. For example, in

searching algorithms the goal is to find a specific element in a given set. Searching for a record in a

database is performed by looking for an exact value within a given field, such as a record identifier

or a group of fields.

Neural networks, unlike such exact solutions, work with approximations [2]. This makes them con-

venient for solving problems related to inexact or partial data. There are situations in which it is

difficult to find a solution, except by using principles of inexact solutions. Those situations often

arise in tasks in which finding a solution – even if it is not an exact one – is more important than the

absolute accuracy. Inexact solutions are convenient for finding similar, pre-processed or raw data.

Neural networks are able to generalize, which is one of their most important characteristics [3]. Their

development has been inspired by biological neural networks and, as such, they represent a very

simplified equivalent of natural neural networks [7].

Neural networks can be realized both in hardware and software. The hardware realization is often

more effective, as it is designed to solve specific problems. The flexibility of the hardware realiza-

tion, however, is very poor. Oftentimes, settings for neural network parameters depend on the prob-

lem that has to be solved, where the software realization provides significant advantages. Despite it

being performed in a general-purpose machine, the software realization is usually much cheaper and

significantly easier to modify, even if it is not as fast as the hardware realization. This is the reason

why, in this paper, the focus lies on the theoretical basis of the software realization on a general-

purpose Graphics Processing Unit (GPU).

2 GPU VERSUS CPU

The type of neural network considered in this work is a multilayer perceptron [4], which is one of

the most widely used neural networks in practice. There are different types and architectures of

neural networks [5] [8], but most of them are known as models that strongly incorporate fine-grained

parallelism [10]. This is appropriate for the GPU, which frequently incorporates a large number of

simple Streaming Multiprocessors (SMs). The realization presented here is based on Compute Uni-

fied Device Architecture (CUDA) [1] – an extension to the C language that allows the GPU code to

2

be written in regular C. The written code can be executed in both host Central Processing Unit (CPU)

and device processor unit (GPU). In Fig. 1, the performances of CPU and GPU are juxtaposed ac-

cording to the CUDA programming developers guide, dating from a number of years ago [1].

Fig. 1. CPU versus GPU performance in gigaflops

This performance has been measured in 2012, but is quite similar now. Moreover, the difference

nowadays is even greater in favour of the GPU.

When it comes to executing a program code in GPU, the main problem is that the algorithms must

be adapted to become attuned with fine-grained parallelism. Here, an approach is introduced that is

applied for parallel execution in both forward and backward stages on a multilayer perceptron. In-

dependent processing units in each layer work in parallel. In the forward stage, parallel calculations

are realized in the hidden and output layers, while in the backward stage, they take place in the

hidden and input layer. The proposed approach is described for neural networks with one hidden

layer, but is applicable for any number of hidden layers as well. Experimental data, that has been

used for the training, is presented in the form of financial data of individual persons. The goal is to

determine each individual’s credit rating based on historical examples. The performance of the re-

alization is demonstrated according to the time required for the execution of sequential and parallel

implementations.

3 SPECIFIC FEATURES OF CUDA PROGRAMMING

In CUDA programming, entry points are provided to the GPU by C functions called kernels. Syn-

tactically, they are invoked as normal functions with two differences:

• Memory management between CPU and GPU. Memory regions, represented in CPU, must

be copied in order to be available in GPU prior to invoking the kernels, as well as after that,

in the opposite direction, to obtain the results. Thereafter, the allocated GPU memory must

be freed.

• By calling the kernel, the number of grids, blocks and threads must be specified. These are

3D dimensional arrays that are physically used for the execution of kernel functions. The

kernel function is executed once for every thread, so a specified number of threads deter-

mines the number of executions. In kernel functions, appropriate program constructs must

be used for the execution of independent code fragments in parallel. Indices of blocks and

threads are available by built-in variables, provided by CUDA. The picture below shows

an example of calling a kernel function, as well as the kernel function prototype.

3

Basically, CUDA hardware and software are organized in devices, grids, blocks and threads, as

shown in Fig.2. In kernel entry points, these elements are specified by describing the level of paral-

lelism.

Fig. 2. CUDA device, block and grid organization

4 THE NEURAL NETWORK ALGORITHM

The realized neural network works in two stages: the training that is based on historical data and the

generation of output data from new and unknown input data.

4.1 Training

In the training stage, available data is presented in the form of pairs of input-output training vectors

z1→d1, z2→d2,… zp→dp. Here, input vectors are denoted as z and output vectors as d. The number

of input neurons is I, hidden neurons are J and outputs are K. Symbol zi stands for generated values

of input neurons, yj for hidden neurons and ok for outputs. Index i is used for input neurons, j for

hidden neurons and k for output neurons. Each neuron, from any given layer, is connected to every

other neuron in the next layer. For these connections, there are associated weights. Those between

input and hidden layer are vji, and the ones between hidden and output layer are wkj.

propagate<<<1, numHiddens>>>(…);

__global__ … propagate(…) {

 int i = threadIdx.x;

 …

}

Number of

blocks

Number of threads

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Thread

(0,1,0)

Thread

(0,0,0)

Thread

(1,1,0)

Thread

(1,0,0)

Thread

(2,1,0)

Thread

(2,0,0)

Thread

(3,1,0)

Thread

(3,0,0)

Device

Block (1,0)

Kernel

1

Kernel

2

4

I and K are determined according to the number of input and output values in the provided training

examples, while J is determined by different approaches [9]. For example, cross-validation can be

used by comparing the output error and by choosing the best hidden neuron numbers. In the here

presented calculation, J is calculated by using (1) and is rounded to the nearest integer value.

𝐽 = √𝐼 ∗ 𝐾 (1)

Output values, generated from input elements, are equal to their input values z1, z2, … zI, but for

other layers, different types of activation functions are used [9]. Thus, data should be transformed

in the corresponding definition domain, ranging from min to max, according to the activation func-

tion. Some of the most commonly used activation functions are shown below [4].

Bipolar sigmoid:

 𝑓(𝑥) =
1−𝑒−𝑥

1+𝑒−𝑥
 (2)

Hyperbolic tangent:

 𝑓(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
 (3)

Softplus:

 𝑓(𝑥) = ln(1 + 𝑒𝑥) (4)

Gaussian:

 𝑓(𝑥) = 𝑒−𝑥
2
 (5)

Bent identity:

 𝑓(𝑥) =
√𝑥2+1−1

2
+ 𝑥 (6)

In neural network layers and processing neurons the activation function can vary, but most often,

only one type is chosen in the training. The main principle for choosing a function type is that is

must be non-linear and its derivative have to be easily computed.

The neural network is trained until the criterion for the completion of the training is met. For exam-

ple, reaching the given number of epochs or a maximum error for all training patterns [6]. In every

epoch, all training patterns are presented to the neural network in random or spatial order and the

weights of connections between neurons are modified. In this way, they are iteratively improving

the generated outputs to be as close as possible to the given outputs. For every training pattern, the

following calculations are performed:

FORWARD STAGE

Input values are calculated for the neurons in the hidden layer:

 𝑛𝑒𝑡𝑗 = ∑ (𝑥𝑖𝑣𝑗𝑖)
𝐴
𝑖=1 (7)

Output values are calculated for the hidden neurons:

 ℎ𝑗 = 𝑓(𝑛𝑒𝑡𝑗) (8)

5

where f is the activation function.

The propagation from hidden to output layer is done in a similar way. First, the input sum is calcu-

lated:

 𝑛𝑒𝑡𝑘 = ∑ (ℎ𝑗𝑤𝑘𝑗)
𝐵
𝑗=1 (9)

after that, the outputs are calculated:

 𝑜𝑘 = 𝑓(𝑛𝑒𝑡𝑘) (10)

where f is one of the functions (2)-(6).

BACKWARD STAGE

Errors are calculated for the output elements:

 𝜀 =
1

2
(𝑑𝑘 − 𝑜𝑘)

2 (11)

In order to calculate the modification of weights of the connections between hidden and output neu-

rons, the following equation is used:

 ∆𝑤𝑘𝑗 = −𝜂
𝜕𝜀

𝜕𝑤𝑘𝑗
 (12)

where η is the learning rate chosen before the training. Normally, it has a small real value that de-

termines the convergence rate. The term
𝜕𝜀

𝜕𝑤𝑘𝑗
 is calculated as follows:

𝜕𝜀

𝜕𝑤𝑘𝑗
=

𝜕𝜀

𝜕𝑜𝑘

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑘

𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑗
 (13)

Taking into account that

𝜕𝜀

𝜕𝑜𝑘
= −(𝑑𝑘 − 𝑜𝑘) (14)

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑘
= 𝑓′(𝑛𝑒𝑡𝑘) (15)

𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑗
= ℎ𝑗 (16)

then

𝜕𝜀

𝜕𝑤𝑘𝑗
=

𝜕𝜀

𝜕𝑜𝑘

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑘

𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑗
= −(𝑑𝑘 − 𝑜𝑘)𝑓

′(𝑛𝑒𝑡𝑘)ℎ𝑗 (17)

and

 ∆𝑤𝑘𝑗 = 𝜂(𝑑𝑘 − 𝑜𝑘)𝑓
′(𝑛𝑒𝑡𝑘)ℎ𝑗 (18)

The derivative f’(netk) of the activation function is calculated according to the weighs. Functions

(2)-(6) have the following derivatives:

Bipolar sigmoid:

 𝑓′(𝑥) = 𝑓(𝑥)(1 − 𝑓(𝑥)) (19)

6

Hyperbolic tangent:

 𝑓′(𝑥) = 1 − 𝑓(𝑥)2 (20)

Softplus:

 𝑓′(𝑥) =
1

1+𝑒−𝑥
 (21)

Gaussian:

 𝑓′(𝑥) = −2𝑥𝑒−𝑥
2
 (22)

Bent identity:

 𝑓′(𝑥) =
𝑥

2√𝑥2+1
+ 1 (23)

By taking the following substitution

 𝛿𝑘 =
𝜕𝜀

𝜕𝑜𝑘

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑘
 (24)

the modification of weights of the connection between input and hidden layer neurons

can be calculated as:

 ∆𝑣𝑗𝑖 = −𝜂
𝜕𝜀

𝜕𝑣𝑗𝑖
= 𝜂(∑ (𝑤𝑘𝑗𝛿𝑘)

𝐶
𝑘=1)𝑓′(𝑛𝑒𝑡𝑗)𝑧𝑖 (25)

After applying the modifications Δvji and Δwkj

 𝑤𝑘𝑗(new) = 𝑤𝑘𝑗(old) + ∆𝑤𝑘𝑗 (26)

 𝑣𝑗𝑖(new) = 𝑣𝑗𝑖(old) + ∆𝑣𝑗𝑖 (27)

all previous steps, starting from (7), are repeated for all training patterns. If the criterion for stopping

the training is still not met, forward and backward stages are performed again.

Modifications of the main algorithm, that are described above, can be applied by using a momentum

constant, in order to avoid being stuck in a local minimum of the error surface ε(w).

 ∆𝑤𝑘𝑗(new) = ∆𝑤𝑘𝑗 + 𝜇∆𝑤𝑘𝑗(𝑜𝑙𝑑) (28)

 ∆𝑣𝑗𝑖(new) = ∆𝑣𝑗𝑖 + 𝜇∆𝑣𝑗𝑖(𝑜𝑙𝑑) (29)

Additionally, a flat spot term can be added in (12) and (26), in order to avoid flat spaces in the error

surface function ε(w).

 ∆𝑤𝑘𝑗 = −𝜂 (
𝜕𝜀

𝜕𝑤𝑘𝑗
+ 𝑐) (30)

 ∆𝑣𝑗𝑖 = −𝜂 (
𝜕𝜀

𝜕𝑣𝑗𝑖
+ 𝑐) (31)

4.2 Parallel Algorithm

The parallel execution is performed in both forward and backward stages. In the forward stage,

independent calculations are carried out for neurons j in (7) and (8) for the hidden layer.

7

Fig. 3. Independent neuron in the hidden layer in the forward stage

In the same way, calculations for neurons k in (9) and (10) are performed on separate SM (Fig.2).

Fig. 4. Independent neuron in the output layer in the forward stage

In the backward stage, calculations in neurons j, in hidden layers, are independent in (19). Neurons

i in input layer (26) are also performed in parallel.

Fig. 5. Independent neuron in the hidden layer in the backward stage

…

Input

neurons

Hidden

neurons
Output

neurons

…

Input

neurons

Hidden

neurons Output

neurons

…

Input

neurons

Hidden

neurons Output

neurons

8

Fig. 6. Independent neuron in the input layer in the backward stage

5 RESULTS

The results presented in this paper are obtained from 100 training examples. Every training example

consists of 22 real values. The training is performed in 500 epochs, with a neural network architec-

ture of one hidden layer, 22 input neurons, 30 hidden neurons and one output node. The experiments

are repeated 20 times and the average time for the sequential realization in the GPU is 25.89 seconds;

the parallel GPU realization lasts 3.73 seconds. If the parallelization is performed only in the forward

stage – as it is shown in Fig. 1 and Fig. 2 – the execution time is 18.55 seconds.

6 CONCLUSIONS AND FUTURE WORK

The parallel realization depends on the architecture and the algorithm of the neural network. Other

approaches also need to be realized and tested, such as the local approach, according to which train-

ing patterns are separated in sub-groups. For every sub-group, a separate neural network is trained,

that can be executed in parallel. Additionally, it is possible to develop hierarchical structures with

independent sub-structures. As the results show, the investigated approach is promising. If the ma-

jority of processing elements can be found in hidden and output layers, the approach is particularly

applicable in practical software solutions.

7 REFERENCES

1. Cheng, J., M. Grossman, T. McKercher. Professional CUDA Programming. Wrox, 2014.

2. Du, K.-L., M.N.S. Swamy. Neural Networks in a Softcomputing Framework. Springer,

2006.

3. Fausett, L. Fundamentals of Neural Networks: Architectures, Algorithms, and Applications.

Prentice-Hall, ISBN:0-13-334186-0, 1994.

4. Galushkin, A. I. Neural Networks Theory. ISBN 978-3-540-48124-9. Springer, 2007.

5. Hech-Nielsen, R. Theory of the Backpropagation Neural Network. Neural networks for per-

ception (Vol. 2): computation, learning, architectures. Hercourt Brace & Co., ISBN: 0-12-

741252-2, 1992, pp. 65-93.

6. J. Zurada, Introduction to artificial neural systems, West Publishing Co., St. Paul, MN, 1992

7. Kasabov, N. K. Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineer-

ing. The MIT Press, ISBN-10: 0-262-11212-4 ISBN-13: 978-0-262-11212-3, 1998.

…

Input

neurons

Hidden

neurons Output

neurons

9

8. Kermanshahi, B. Recurrent neural network for forecasting next 10 years loads of nine Japa-

nese utilities. Neurocomputing, Vol. 23, No. 1, 1998, pp.125-133

9. Tarassenko, L. A Guide to Neural Computing Applications. Elsevier, 2004.

10. Touretzky, D. S. 15-486/782: Artificial Neural Networks, Lectures, Carnegie Mellon

Univeristy, Fall 2006 - http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15782-

f06/syllabus.html.

8 ABOUT THE AUTHOR

Dr. Ventsislav Nikolov

Senior Software Developer

Eurorisk Systems Ltd.

31, General Kiselov Str., 9002 Varna, Bulgaria

Е-mail: vnikolov at eurorisksystems dot com

