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Abstract: This paper examines performance issues of a software application that identifies duplicated 

records in a customer information database. It discusses approaches, logic and algorithms, analyzes essential 
research papers on this topic and debates problems and expected performance gains. 
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INTRODUCTION 
Problems of data cleaning oftentimes arise in large, and even middle-sized, 

organizations. Collecting data of objects, persons or activities, especially ones that come 
from different sources, can lead to this problem quite frequently. There are numerous works 
focusing on developing appropriate algorithms and using specially designed software for the 
performance of such a task.  

This article [1] describes an approach for the detection of duplicate algorithms in a 
medium-sized international bank. This feature, built as a module within a larger project, was 
designed to detect potential duplicates from data obtained from different front office systems 
and located in one date warehouse. The analysis of data records and algorithms, that is 
required in order to compare and determine potential duplicates, is being realized via CLIPS 
rules. One important requirement for the application is to provide answers regarding 
potential duplicates as quickly as possible. It is to be used via the web GUI interface for 
online duplication checks. This article [1] describes the problems that need to be solved, the 
algorithm, the realization and some of the main researches conducted in this area. 

Another module in the application uses the discussed approach to perform a thorough 
analysis, carrying out a comprehensive search through all customer rows in the database to 
localize duplicated rows. This article focuses on problems, solutions and optimizations that 
have been realized during the design and development of this project.  

 
OFFLINE DUPLICATION SEARCH TASKS 
The described approach is realized as a software module, which starts in an offline 

batch mode. The following tasks within this duplication search module have been defined:  

• Up to 2 million records, describing customers from different institutes, have been 
collected into the database. 

• 14 data fields are defined as essential and are used for the duplication search.  

• Character strings from different character sets are enclosed.  

• The goal of the search operation is to form customer groups with high degrees of 
similarities and assemble those groups into a single company customer.  

• The complete research of the entire database is to be completed within few days. 
Different approaches gave different performance results: 
The comparison, according to the brute force method, is not admissible in this case 

because one would compare each customer to all the others. For 100.000 customers and 
14 data fields, the total number of runs for the edit distance algorithm is 100.000 x 100.000 
x 14 = 140.000.000.000.  

The proposed solution uses flexible SQL instructions to reduce the size of the window 
to amount between 100 and 300 rows [1]. In the case of 100T customers, this means 100T 
x 200 x 14, i.e. 280.000.000 Edit Distance algorithm runs, that is 500x faster. 

This article discusses an approach that improves the performance. In the proposed 
algorithm, clusters of duplicates are detected, mutual similarities calculated and clusters 
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excluded from further search operations. In this way the search area, as well as the number 
of the Edit Distance runs, is exponentially reduced.    
 

CURRENT SOLUTION FOR THE DUPLICATION SEARCH 
The proposed solution has been described in detail in [1]. This section will cover some 
basic points that are essential for the algorithm and discuss only the performance aspects.  
 
Data Screen Size 
The search of duplicates can be started for each institute customer against all other institute 
customers. The result per institute customer is represented in the form of a list of potential 
duplicates with a coefficient of similarity, expressed in %. 
The data screen size defines how many data records are to be compared with the sample 
data record in each case. If there is one single criterion and it produces two data records 
that are too far apart from each other, the second one will not be included in the data screen 
and won’t be recognized as a potential duplicate. If, in order to avoid this, the screen 
becomes too wide, there will be many meaningless comparisons which will affect the 
performance. The selected approach must use several criteria when selecting a list of 
potential duplicates. In this way, the size of the data screen can be kept small due to the 
implementation of a ‘multi-pass approach’ [3]. The number of data records to be compared 
is requested from the data base. The following conditions must be fulfilled:  

• The 14 relevant data fields for the duplication search are held in the data base in both 
the original and the converted form (7-bit ASCII, small letters). The specially designed 
data table, indexed with binary (bitmap) indices, is used to keep the converted form 
of the strings. The data in this table is needed for all the steps required for the 
duplication process [1].  

• Logical functions are applied using dynamic SQL instruction over the fields of the 
converted form table. In the first step, the size of the data screen (suitable number of 
rows for duplication search) is determined. Logical functions determine the size of the 
data screen based on the importance (priority) of data fields. If the number of selected 
data records is too large, the logical function changes the selection, straightening the 
constraints. If the number is too small, the constraints widen. The structure of logical 
functions is operated by the search logic. The goal is to determine the number of 
potential duplicates lists – using bitmap indices in the data base and flexible logical 
operators (and, or) – without first having to retrieve the data records themselves. 

Example: The permitted size of the data screen is defined as [100 .. 300] data records.  
The following „where “- clause of an SQL instruction for COUNTS determines two potential 
duplicates (too few for the data screen size):  
 
  NAME='Wex & Wex Gruen GmbH' or BRIEF_NAME='Wex & Wex Gruen GmbH' or  
  FULL_NAME='Wex & Wex Gruen GmbH' or FOUNDING_BIRTH_DATE={d'1900-12-24'}   
  and STREET='Fortnerstr 193' and( CITY='Graz-Strassgang' or POSTCODE='8054') and   
  REGISTER_NO='58449F' andIDENT_NUMBER='88429' and SEX='0'  
   
 
After replacing the first „and “(see above) with „or “ in the search logic, the “where “- clause 
extends the constraints and 147 potential duplicates are determined: 
 
NAME='Wex & Wex Gruen GmbH' or BRIEF_NAME='Wex & Wex Gruen GmbH' or  
FULL_NAME='Wex & Wex Gruen GmbH' or FOUNDING_BIRTH_DATE={d'1900-12-24'} 
or STREET='Fortnerstr 193' and ( CITY='Graz-Strassgang' or POSTCODE='8054') and 
REGISTER_NO='58449F' and IDENT_NUMBER='88429' and SEX='0'  
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The size of the potential duplicates list (147) ranges between 100 and 300. The data 
screen size is determined and data records are taken from the data base. 
 
Comparison of data records  
Data for the selected customer is compared to records from the data screen window. For 
each data record in the data screen, an evaluation of similarities is computed. The evaluated 
data records are presented to the user to help him make a final decision. During the 
duplication evaluation process [1], individual data fields are compared using the edit 
distance algorithm [7,8]. The results for the separate fields are weighted and combined 
together in order to generate the final coefficient of similarity:  

     Result = Σ (Weight(Feld i)*Similarity(Field i)) / Σ (Weight (Field i)), 

where  
Weight(Field i) = Max(Priorities) + 1 – Priority(Field i), 

Total Similarity = 1 –  (1 - SimilarityCoefficient(Field i)) 
 

The maximum similarity result in the case of equality is 100%. If a previously defined minimal 
value is reached, the data record can be rated as a potential duplicate. If values for a field 
with high priority have small or no similarities (if data for a field is equal to 0, it is treated as 
unknown and not equal), a high negative evaluation is assigned, which can’t be 
compensated by adding the weighted evaluations of the remaining comparison elements. 
The result in this case is lower than 100%, independent of the fact that the remaining fields 
could potentially reach the similarity of 100%. 
 
Performance of the proposed solution  
On the test Sun server, the proposed solution reaches a performance of 3.500 to 3.900 
customers per hour. The goal is to increase this performance significantly. 
 

INCREASING OF PERFORMANCE USING CLUSTERING 
Principles  
The idea is to locate clusters of similar customer rows, group them and exclude members 
from later searches and comparisons. The following fundamental aspects are important: 

• The similarity from A to B is commutative, i.e. similarity (A, B) = similarity (B, A). This 
is connected to the meaning of the Levenshtein distance [4], used for the 
measurement of the Edit Distance algorithm [5,6], which is defined as the minimum 
number of insertions, deletions or substitutions necessary to transform one string into 
another. 

• Customers with levels of similarity higher than previously defined (for example 50%) 
must be grouped together in order to create a cluster and be capsulated. This is 
based on the assumption that customers in a cluster have smaller similarities 
compared to all other customers, thus it doesn’t make any sense to calculate the 
similarity coefficients. The group can be considered as complete and excluded from 
further searches. In this way, the number of search operations in the search area will 
be reduced. 

• It must be possible to calculate internal similarities between cluster member rows, 
based on the similarities between one member and all others. For example, after 
calculating the similarity coefficients between (A,B), (A,C), (A,D) one must be able to 
determine the similarity between (B,C),(B,D),(C,) without a re-run of the Edit Distance 
algorithm, thus reducing the number of customer comparisons. Table 1 illustrates one 
such example of this principle:  
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  Sim Dev Var   Sim    Sim    Sim 

a a 1,00 0,00 0,00 b a   c a   d a  

a b 0,80 0,20 0,04 b b 1,00  c b   d b  

a c 0,60 0,40 0,16 b c   c c 1,00  d c  

a d 0,70 0,30 0,09 b d   c d   d d 1,00 

Table 1.: Cluster of customers with higher degrees of similarity 
 

where 
 Sim = Similarity 
 Dev = Deviation = 1 – Similarity 
 Var = Variance = Deviation ^2 
 
In the example above four customers (A, B, C, D) are given. The standard algorithm for the 
duplication search [1] produces the following similarities: (A,B) = 0,8; (A,C) = 0,6; (A,D) = 
0.7, and (A,A) = 1, which is trivial and obvious. The level for clustering is defined to 50%. All 
the calculated similarities are greater than the selected level. This means that the 4 rows 
will form a cluster, while all remaining rows will have similarities to the cluster members, 
which are below this border. Several mutual similarities are missing however (see empty 
fields in Table 1. (B, C), (C, D)). The computing of those missing similarities will save 9 
comparison cycles, i.e. with only 3 comparisons (customer A to all others) 12 comparisons 
will be covered. The performance gain depends on the size of the cluster – the higher the 
better. 
 
Volatility Algebra 
Volatility Algebra is used to determine the mutual similarity of coefficients in terms of risk 
calculation [2] (e.g. in VaR/CoVaR). The RiskMetrics volatility and correlation data are 
related to price changes of underlying market variables, not to the values of variables, i.e. 
the volatility of price changes and correlations reflects the correlation between price changes 
of two market variables that are being dealt with. It doesn't matter whether the variables 
correlate to each other; important is the correlation between their price changes. In this case, 
the standard deviation of price changes that are assumed to be normally distributed could 
be interpreted as an accidental unsystematic error in the time series. This requires the usage 
of algebra for the calculation of the compound error, which arises in complex formulas of 
stochastic variables. If two stochastic variables are arguments of a arithmetic function: 
 z f x y= ( , ),  

then the compound error obtained from the unsystematic error of the two stochastic 
variables is given as an approximate estimation (ignoring higher order products): 
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From the formula above one can see that, for the given data of two normally distributed 
simple or compound objects: 
 First object:  X  Second object: Y 
 Absolute Volatility:  Vx  Absolute Volatility: Vy 
 Current Value:     x  Current Value: y 
 
  Absolute Covariance: Covarxy  = Vx * Vy * Corrxy  
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the following compound objects (Z: Absolute Volatility Vx, Current Value z) are derived using 
stochastic arithmetic operators (Table 2): 
  

Sum operator: Z = X + Y Multiplication operator: Z = X * Y 

z x y V V V 2 Covarz x y xy= + = + + , 2 2
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Difference operator: Z = X - Y Division operator: Z = X / Y 

z x y V V V 2 Covarz x y xy= − = + − , 2 2
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Table 2: Compound operators 
 

Sum and Difference operators use the absolute volatility of two objects to calculate the 
volatility of the resulting object. On the other hand, Multiplication and Division operators 
involve relative volatilities, obtained by dividing the absolute volatility on the current values. 

 
Computation of similarities  
This section presents a method for the computation of mutual similarities from determined 

similarities. Based on the sample above, similarity (A, B) = 0.8 and similarity (A, C) = 0.6 will 
be used to determine similarity (C, B). The steps for the computation are shown in Fig 1.  
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The minus sign (-) in the formula is due to the negative behavior correlation. The 
computation of the similarity (C, B) with the sample data and a correlation coefficient of 0,5 
leads to the following result:  
 

Deviation(C, B) = SQRT(0,04+0,16-0,08) = SQRT(0,12) = 0,35 
Similarity(C, B) = 1 – 0,35 = 0,65 
 
If the correlation coefficient C = 0 is selected, 
 
Deviation(C, B) = SQRT(0,04+0,16) = SQRT(0,20) = 0,45 
Similarity(C, B) = 1 – 0,45 = 0,55 
 
If the correlation coefficient C = 1 is selected, 
Deviation(C, B) = SQRT(0,04+0,16-0,16) = SQRT(0,04) = 0,2 
Similarity(C, B) = 1 – 0,2 = 0,8 
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Figure 1 

 
 

The results of all calculations, based on the discussed principles and correlation 
coefficient = 0.5 are given in Table 3. 

 

  Sim Dev Var   Sim    Sim    Sim 

A a 1,00 0,00 0,00 b a 0,80  c a 0,60  d a 0,70 

 b 0,80 0,20 0,04  b 1,00   b 0,65   b 0,74 

 c 0,60 0,40 0,16  c 0,65   c 1,00   c 0,64 

 d 0,70 0,30 0,09  d 0,74   d 0,64   d 1,00 

Table 3: Cluster of customers with a higher degree of similarity 
 
 

The following considerations and conclusions can be defined for the selected approach:  

• The correlation cannot be negative, it has values between 0 and 1. 
 

 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95 1,00 

0,50 0,50 0,52 0,54 0,56 0,56 0,57 0,56 0,56 0,54 0,52 0,50 

0,55 0,52 0,55 0,57 0,59 0,60 0,61 0,61 0,60 0,59 0,57 0,55 

0,60 0,54 0,57 0,60 0,62 0,64 0,65 0,65 0,65 0,64 0,62 0,60 

0,65 0,56 0,59 0,62 0,65 0,67 0,69 0,70 0,70 0,69 0,67 0,65 

0,70 0,56 0,60 0,64 0,67 0,70 0,72 0,74 0,74 0,74 0,72 0,70 

0,75 0,57 0,61 0,65 0,69 0,72 0,75 0,77 0,78 0,78 0,77 0,75 

0,80 0,56 0,61 0,65 0,70 0,74 0,77 0,80 0,82 0,83 0,82 0,80 

0,85 0,56 0,60 0,65 0,70 0,74 0,78 0,82 0,85 0,87 0,87 0,85 

0,90 0,54 0,59 0,64 0,69 0,74 0,78 0,83 0,87 0,90 0,91 0,90 

0,95 0,52 0,57 0,62 0,67 0,72 0,77 0,82 0,87 0,91 0,95 0,95 

1,00 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95 1,00 

Table 4: Similarity Coefficients for correlation coefficient C = 0.5 
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• Investigations using sample data have shown that a correlation of 0,5 produces a 
good approximation of real results. The computation function for the similarity 
between B and C with correlation = 0.5 and different similarities for (A, B) 
(perpendicular) and (A, C) horizontal) is shown in Table 4 and Fig. 2.  

 
 

 
Figure 2 

 
By selecting the correlation of 0,5 some plausible characteristics are brough about: 

• The computed similarity is not lower than the similarity of the two input similarities 
(see Table 4).  

• If the two input similarities are equal, the computed similarity too is equal to them 
(Table 4, the diagonal). 

 
 

Estimation of the performance increase  
The reduction of the number of reading and comparison operations depends on the number 
and size of clusters. The more duplication clusters are detected and the bigger they are, the 
greater the performance gain.  
If there is no possibility of forming clusters, there is still performance gain, due to the usage 
of Similarity(A,B) = Similarity(B,A).  

 
 

CONCLUSIONS AND FUTURE WORK 
The discussed approach was realized as a small test module. The following 

conclusions were drawn:  
o The preparation tasks, involving data modification, must be performed on the 

database server. This approach enables a better performance. 
o To attain the suggested performance results in real-time, additional databases and 

binary indices must be prepared during the previous night batch mode. 
o Data for already calculated similarity coefficients is being kept in hash tables in the 

memory. This is a quick way to determine whether a particular pair of rows has 
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already been compared. 
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