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Market Risk Evaluation 
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Methodology and Features 

Dr. Anatoliy Antonov 

 
 

1. Introduction 

Market Risk involves the uncertainty of future earnings resulting from changes of various 
independent underlying assets in market environment (prices of assets, interest rates, FX rates, 
Spreads, etc.) for a certain future time point (risk horizon). The market risk of a position or of a 
portfolio is measured by a single value, called market Value at Risk (VaR). Market VaR 
represents unexpected loses at adverse move and is a measure of risk based on a probability of 
loss and a specific time horizon in which this loss can be expected to occur. Bank regulators use 
VaR to set capital requirements for bank trading accounts because VaR models can be used to 
estimate the loss of capital due to market risk. 

 
PMS include three methods to calculate Market Risk: parametric VaR/CoVaR, historic simulation 
and structured Monte Carlo simulation that are the most powerful one. 

 
 

 

Chart 1. Monte Carlo Simulation an VaR of a short Swaption 
 

A structured Monte Carlo simulation engine in PMS produces price distribution of a single 
financial position or of a portfolio aggregate by applying numerical calculation procedures on a 
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large set of possible market scenarios derived from statistic data for market moves from historic 
series. The structured Monte Carlo simulation produces better VaR results for non-linear 
instruments such as options, long-term cash flow assets and pay off of structured products 
retaining the non-linear nature of the assets (s. Chart. 1.). 

 
 

2. Structured Monte Carlo Simulation 

 
2.1 Evaluation Methodology 

The Monte Carlo module (s. Chart 2.) for market risk is based on following methodology: 

 

 

Chart 2. Structured Monte Carlo Simulation 
 

1. Volatility vector (V) and correlation matrix (R) for a set of market risk drivers such as interest 
rates, FX rates, prices and spreads are produced from statistics of own historic series in the 
PMS data base or imported from JPMorgan standard risk data sets. 

 

2. The covariance matrix (C) is obtained by matrix multiplication of the volatility vector (V) by the 
correlation matrix (R). 

 
3. The Cholesky matrix S is constructed from the covariance matrix (C), so that 

S x S' = C, where S' is the transposed matrix. 

Matrix Perturbation is used to adjust the covariance matrix to be positive definite in case the 
original matrix is not positive definite as a result from dependencies of the risk drivers. 

 
4. A random generator produces independent samples for each market driver using standard 

normal distribution SND(0,1) stored into deviation vectors (D). A SVD correction and normal 
form correction applied to random vectors ensures normal distribution with mean = 0, 
standard deviation = 1, skewness = 0, kurtosis = 0 as correlation between factors = 0. The 
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high quality of the random series reduces the number of Monte Carlo runs, 5.000 to 10.000 
runs are usually enough to obtain good results. 

 

5. The deviation vectors (D) is multiplied by the Cholesky matrix (S) to take the covariance 
between every risk driver pair into account. This produces delta vectors (B) of normal 
distributed and correlated deviations. 

 
6. The vectors (B) are applied on the actual risk driver values (interest rates, FX rates, spreads, 

etc.) in the asset vectors (A) and this produces scenario vectors (E) for the Monte Carlo runs 
that compute the pricing expression value using pricing trees to represent instruments and 
portfolios supplied by a Pricing Tree Generator. The pricing trees are specialized data 
structures ensuring high performance of the simulation. 

 

7. Steps 6 is repeated a number of times (5000…10000). The large scenario set causes the 
calculation of price distributions of pricing expression. The resulted price distribution is 
constructed by counting the appearance of the values within many adjacent small ranges and 
there after the Value at Risk is calculated by numerical integration of the distribution density 
using a confidence percentage, for example 1%, for the upper limit of the price distribution. 

 

 
2.2 Monte Carlo Simulation Mathematics 

The Monte Carlo simulation steps from above use a set of well-known mathematical operations: 

 

2.2.1 Calculation the covariance matrix 
 

Ci , j  Ri , j  *Vi *Vj 

 
, i = 1...n (matrix width),   j<= i (triangle matrix), 

 
where Cij - Element from covariance matrix 

 Rij - Element from correlation matrix (Rii =1) 
 Vi, Vj - Element from volatility vector 

 
 

2.2.2 Construction the Cholesky matrix S 

S x S' = C, where S' is the transposed matrix, aij – elements of the matrix S 

For matrix width = 3 we receive for example following matrix operation: 

 c11 c12 c13   a11 0 0   a11 a21 a31 
C  

 
c c c   

 
 
 
a a 0  

 
 
 

0 a a   



  21 22 23    21 22   22 32 

 
31 32 33 

 
31 32 33 


        

0 0 a33 



The matrix multiplication involves formulas for calculation the elements of the Cholesky matrix: 
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a     c  a 
2  


ii 



ii ik 

k 1 

1  i 1 
aij     cij    aik   a jk 



j  i  1, i  2,..., N 

a jj   k 1 


2.2.3 Matrix Perturbation 

 
This is a method for transforming a non-positive definite matrix into a positive definite one. A 
matrix is said to be symmetric if A = A‘, where A‘ is the transpose of A.  Therefore, covariance 
and correlation matrices are real and symmetric. A real symmetric matrix A is said to be positive 
definite if x‘Ax for every vector x different from 0. Given this definition, one can prove that a real 
symmetric matrix is positive definite if and only if all its eigenvalues are greater than zero. 

 

The question is: “How do the eigenvalues of a matrix A change if it is subject to a perturbation A 
 A+E?” Because the eigenvalues are continuous functions of the entries of A, it is natural to 
think that if the perturbation matrix E is small enough, then the eigenvalues should not change too 
much. It would be undesirable for our purposes to drastically change a matrix in order to turn it 
into a proper covariance matrix. 

 
The Monte  Carlo engine of PMS use the following perturbation: 

 

AA+e(I-A) = B,   where e is a scalar and I is the identity matrix. 
 
If e = 0 , then AA ; and if e = 1, then AI, which is clearly a positive definite matrix. Therefore, 
since the eigenvalues of a matrix are continuous functions of its entries, there are an infinite 
number of scalars e in the interval [0, 1] such that given by equation above is a positive definite 
matrix. The task is to obtain the min of e, which is calculated from min of the eigenvalues. 

 
 

2.2.4 Generation of standard normal distribution SND(0,1) vector 

V    2 Rnd  1 V    2 Rnd   1 S  V 
2  
 V 

2
 

1 1 2 2 1 2 

for  S  0: 
 

SND  V  SND  V 


1 1 2 2 

 

where   Rnd1, Rnd2 - two adjacent random numbers (0..1) 

SND1, SND2 - two adjacent random numbers with standard normal distribution. 
 

2.2.5 Correction of random series 

 
2.2.5.1 SVD Correction of expected value, standard deviation and correlation 

 
The first correction of expected value, standard deviation and correlation is made by a common 
post-processing. The approach is based on calculating the statistical figures of the random 
numbers and application of the differences to the ideal case for the correction. 

 

Formal Task 
 

Given the matrix X(n,k), which n lines contains the generated k-dimensional normally distributed 
random samples. The statistical parameters of these sample can be calculated: m(k) vector of 


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yi   S    x   r, i 

 

 
mean values and K(k,k) covariance matrix. The distribution caused by the Matrix X is 

represented follows the normal distribution N
(k)

(m, K). It also requires that the sample distribution 

of the target N
(k) 

(v, C) should have specific parameters, in our particular case, v = (0, 0, ..., 0) 
and the matrix C should be the unit matrix (overall 0 and everywhere on the main diagonal = 1). 
There are two formal challenges: 

 The task of shifting the statistical means of the point m to point v;

 The task of transforming the statistical structure, represented by the covariance matrix K, to 
the target matrix, represented by C.

 

Solution of the tasks 

The first challenge is easily resolved by shift the statistical means by the difference vector r. 

The second challenge requires the conversion of the statistical sample X in a new Y, which owns 
the target parameter. The solution is in the form of a linear operator with the conversion matrix S 
sought. Every vector Yi is determined the following manner: 

 

T 
i  1, n 

 

The statistical parameters of the sample Y are calculated as follows: 

The vector of mean values: 

E{yi }  v 
i 

E{S 
T  
 x  r}  r  E{S 

T  
 x } 

i 
i 

i
 i 

r  S 
T  
 E{x }  r  S 

T  
 m 

i
 i 

The difference vector r can be determined from the above expression: 

r  v  S 
T  
 m 

The elements of the covariance matrix are: 

E{( yi 
i 

 v)  ( yi  v)
T 
}  C 

 E{(S 
T   
 x 

i 
 r  v)  (S 

T  
 x  r  v)

T 
} 

 E{[S 
T   
 x 

i
 i 

 r  (r  S 
T  
 m)] [S 

T  
 x  r  (r  S 

T  
 m)]

T 


 E{[S 
T  
 (x 

i
 i 

 m)] [S 
T  
 (x  m)]

T } 


 S 
T  
 E{(x 

i
 i 

 S 
T  
 K  S 

 m)  (xi  m)
T 
} S 

For the existence of the matrix S is necessary and sufficient, that the matrices K and C are 
commutative. This condition is fulfilled, because the covariance matrices are symmetrical. The 
correction implemented for random series uses a SVD algorithm (Singular Value Decomposition) 
in determining the conversion matrix S. 

2.2.5.2 Correction for normal distribution form 
The purpose of the form correction is to correct figures of the second order (Kurtosis = 0, 
Skewness = 0, i.e. the distribution form of the ideal normal distribution should to reached, but the 
results of the first correction should be retained. 

i i 

i 

i 
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The following are important aspects in the implementation of this correction: 

 known is the inverse function of a standard normal distribution SND(0.1) a strict linear 
function, i.e. a synthetic linear numerical series could produce after converting an ideal 
standard normal distribution.

 The necessary correlation = 0 between random series is given by the sequence of random 
numbers and through their mutual order in the random series. The sequence of each random 
number in a random order with regard to the sequence of all the other random numbers in the 
other random series should be preserved.

From the above follows an approach to the implementation of the correction, using following 
steps: 

 

 Each time series is converted by the inverse function.

 The converted random numbers should be equal distributed, because of origin standard 
normal distribution. Of course, this is not the case because of random generator, and the task 
of correcting the form to ideal equal distribution.

 The random numbers are then sorted, with their original order is saved. The new order 
should follow a linear function. Again, this is not the case, the numbers vary somewhat within 
the linear function.

 The figures are then overwritten by a synthetic linear function (from 0 to 1) and converted 
back again to normal distribution, thus arise random series with a very good quality.

 As a final step, the original order is restored, to reconstruct the initial series correlation.

 

2.2.6 Obtaining the delta normal distribution vector 

B   S  D , 

where   S - the Cholesky matrix 
D - the standard normal distribution vector 
B - delta normal distribution vector 

 

2.2.7 Calculation the scenario vector 

The scenario vector is obtained by application the delta normal distribution vector on the asset 
vector, containing interest rates, foreign exchange rates, etc. 

 
for interest rates: 

A
Scenario  

 A   1  B 
i i i 

 

for prices and foreign exchange rates 

AScenario   A  e
B

t
i ti 

 

where   Bi - Scenario 
Ai - Asset 

 

2.2.8 Construction the price distribution and calculation the Value at Risk 

After an instrument or a portfolio is evaluated for all Monte Carlo runs (5000. 10000) using 
different scenarios, the price distribution is found by counting the appearance of the portfolio 
values within small adjacent intervals around the zero scenario. The Value at Risk is calculated 
by numerical integration of the distribution density function using a confidence level. 

 
Value at Risk = Porfolio_Mean – Confidence_Value 
Confidence_Value = Portfolio Value for the confidence level 
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2.3 Instrument Representation by Pricing Expressions 

 
Large number of instruments having closed pricing formulas such as Loan, Bond, Interest Rate 
Swap, Cross Currency Swap, Interest Rate Future, FRA, Bond Future, Floating Rate Note (FRN), 
etc. can be represented by cash flow series including payments in different currencies. The prices 
of these series can be expressed symbolically by pricing expressions having straight 
representation on pricing trees. 
The aim is to obtain fast simulation tree structures for the pricing formulas to achieve high 
performance of the subsequent simulation runs. 

 

2.3.1 Syntax of Pricing Expressions 

Pricing expressions are represented by standard arithmetic expression using a set of simple 
syntax rules. 

 

expression ==>  ( term ('+' | '-') expression ) | term 
term ==>  ( factor ('*' | '/') term ) | factor 
factor ==>  '(' expression ')' 

==>  'df’'(' currency ',' [ market ',' ] period [ ',' number ] ')' 
==>  'fx''(' currency ')' 
==>  'ei''(' currency ')' 
==> number 

 
currency ==>  'usd' | 'eur' | ‘gbp’ | .... 
market ==>  'b' | 's' 
period ==> number 

 
The meaning of the stochastic factors is following: 

df(gbp, s, 4m, 2500) - price (discount factor) of 4 month 2500 gbp cash flow 
(swap market) 

df(usd, b, 1.5y) - price 18 months 1 usd cash flow (bond market) 
fx(eur) - foreign exchange rate leading currency for 1 eur 
ei(eur) - equity index for eur 
b or s - bond or swap market 

 
 

2.3.2 Pricing Formula Examples 

Below are given pricing formula examples, which can be used as templates for other instruments. 
Each example is commented using some abbreviations: 

 
Fr - frequency;  Ma - maturity; Ir - interest rate; Po - position; 
Cu - currency;   Na - notional amount; Fp - future price; Fx - FX rate 

 
1.Government Bond: Fr=12m, Ma=2y, Ir=6.4%, Na=10000, Po=long, Cu=eur 

FixedCF(DEM) = 10000*(0.064*(DF(eur,b,12m)+DF(eur,b,24m))+DF(eur,b,2y)) 

simplified to: DF(eur,b,360,640) + DF(eur,b,720,10640) 

2.Float cash flow: Fr=1y, Ma=2y, Ir=float, Na=1000, Po=long, Cu=usd 
 

FloatCF(USD) =  ((df(usd, s, 0y)/df(usd, s, 1y)-1)*df(usd, s,1y)+ 
(df(usd, s, 1y)/df(usd, s, 2y)-1)*df(usd, s, 2y)+df(usd, s, 2y))*1000 

simplified to: df(usd,0y,1000) -->  i.e. risk free value of 1000 
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3.Profit&Loss of 7x3m FRA: Ma=7m, Na=1000, Po=short, Cu=gbp, Ir=0.06 

P&L-FRA(GBP) = 8000*(0.06/4-df(gbp,7m)/df(gbp,10m)-1))*df(gbp,10m) 

simplified to: df(gbp,10m,8012)-df(gbp,7m,8000) 

4.Representation of a simple instrument with two payments IR(t+1) and IR(t+2) 

The payments are in a foreign currency. The discount factors are split on standard zero curve 
vertices. The pricing expression is as follows: 

Price  IRt 1  DFt 1   IRt 2  DFt 2  FX  Nominal 

The corresponding pricing tree is shown on chart 3. 
 
 

 

  
 

Chart 3. Pricing Tree Example 

 
2.3.3 Semantic of Pricing Expressions 

 
2.3.3.1 Forward Pricing 

The evaluation of pay off requires forward pricing for various future evaluate dates, that is the 
pricing formulas should be able to express forward prices and discount factors: 

 

forward_df(te, Ti) = df(t0,Ti) / df(t0,te) 

 
2.3.3.2 Forward Interest Rates 

The forward interest rates should be expressed by discount factors from zero curves for the 
desired currency using the arithmetic operators: 

 

forward_interest_rate(Ti-1, Ti) = (df(t0,Ti-1) / df(t0,Ti) – 1) / Period 

2.3.3.3 FX Rate Representation 
The representation of FX rates should follow a straight approach based on a leading currency, 
that is the base currency of the used FX-Table connected with volatility and correlation data of all 
FX rates related to this leading currency. Using the notation: 

Cashflow  Mapping, Volatility   und Korrelationsmatrix 

Market risk pricing tree 

  VaR  

+ + 

/ 

* 
* 

* 

DF(t+1) DF(t+2) 

Fx 

0 IR(t+1) IR(t+2) Nominal 
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fx( Cu1, Cu2 ) = foreign exchange rate Cu1 -> Cu2 
(how many units of Cu1 costs one unit of Cu2 ), 

 

we can express all needed rates, for example assuming USD as leading currency: 

 

fx( USD, Cu2 ) = fx(Cu2) 
fx( Cu1, USD ) = 1/fx(Cu1) 
fx( Cu1, Cu2 ) = fx(Cu2)/ fx(Cu1) 

 

2.3.4. Representation of Instruments 

 
Two concepts: cash flows (or pay off) and option rights are enough to explain the nature of most 
financial instruments by closed formulas that can be simulated on a pricing tree. 

 
2.3.4.1 Interest rate and FX instruments 

Redemption payments on future dates are specified according to an amortizing schedule, the  
final redemption payment zeroes the initial debt. Fix or float interest rate payments on the 
remaining debt are defined according to future interest rate periods. Linear combinations 
(portfolio) of this basic schema are used to express much more complex instruments such as 
interest rate swap, reverse floater, etc. or such as the cross currency swap involving two 
currencies. All instrument payments can be seen as one or more cash flow series in one or more 
currencies or as a portfolio of single payments in one or in more currencies. So the theoretical 
price of this instrument group is given by a linear sum of discounted payments grouped by 
currency and aggregated to a consolidation currency using spot foreign exchange. 

j i 

Price   fx j   npvi , where npvi   cfi dfi 

All cash flow payments cfi are split and cumulated on standard zero curve vertices. This 

increases the performance of Monte Carlo dramatically because the number of simulated cash 
flow prices is reduced to number of standard zero curve vertices, e.g. 1000 of bonds are 
represented on small set of vertices, for example 1, 3, 6, 12 months and 2, 3, 5, 7, 10, 30 years. 
Three basis nodes are derivable from above: 

fix cash flow: fix(currency, market_id, time, value) 
float cash flow: float(currency, market_id, time1, time2, value) 
foreign exchange: fx(currency, market_id, time, value) 

 
2.3.4.2 Stock instruments 

Shares inclusive dividends can be treated as cash flow according to current market share price 
and future dividend payments. Abstract assets such as the stock index used as underlying of 
options or of futures can be seen as payments too because there is a fixed price for every stock 
index point. Share volatility is usually linked to stock index volatility by Beta factors, but shares 
can be treated separately too.. 

 
2.3.4.3 Future instruments: 

The future contracts involve symmetric right and obligation to buy or to sell an asset on a future 
date for a predefined asset price. This deal type can be expressed by a linear combination 
(portfolio) of two lending/borrowing transactions: one on the today date and one on the future 
date, so futures can be explained fully by these two transactions. Interest rate futures including 
FRA consist of lending/borrowing on two different future dates while foreign exchange futures and 
outright deals with future exchange of two currencies. Futures incomes (Profit & Loss) can be 
represented using the same way as for the interest rate asset instruments, i.e. by a linear sum of 
discounted payments in one or in two currencies. 
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2.3.4.4 Option instruments 

The representation of options is more complex and depends on contract conditions and option 
right period. Current version of market risk engine in PMS values only European options on 
generalized Black & Scholes node. Complex path dependent multi-option rights are valued by 
linearization based on key rate values. 

 

Generalized Black&Scholes Valuation 
 

A basis node included into pricing trees (s. Chart 4.) to represent general European options 
including many exotics such as digital option is defined as follows: 

 

max (asset1  , asset2  , exer_date, volume) 

 
 

Exercise right 
 

Date, Grid T 
Period 

 
Option 

max 

S1 S2 

 
 

Asset Object: 
- Incomes 

+ Outcomes 

 
Asset 1 

 
Asset 2 

  
 

  
 

Chart 4. Option Valuation within generalized Black&Scholes Node 

Price, annual volatility or implied term structure construct, currency, asset incomes and outcomes 
and market_id for linking to market data sources are properties of the underlying assets and not 
of the option self, i.e. they should be supplied by the underlying asset or through an underlying 
asset object (a more complex asset). 

 

3. Dimensions and Risk Measures of Monte Carlo Simulation 

 
3.1 Risk Drivers 

Following risk drivers are recognized for every currency and market and are fully correlated (s. 
Chart 5): 

 Interest rate curves represented by standard vertices in money and capital market segments.

 FX rates.

 Shares and stock indexes.

 Spread curves to simulate credit risk based on CDS Spreads.

 Spread indices, e.g. ITRAX, to simulate credit risk based on CDS spread for Index basket.

Data Sources – Prices, Curves, Volatility, Correlation 

Price 
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Chart 5. Correlation Matrix and Volatility of Risk Drivers 

3.2 Data Sets 

Following market risk data can be used within Monte Carlo Simulation: 

 Standard JPMorgan data sets: daily, monthly and basel downloaded from the RMG site.

 Own data sets calculated from time series stored in the PMS data base (s. Chart 6.)
 

 
Chart 6. Calculation of own Data Sets (Correlation Matrix and Volatility) 

3.3 Risk Types 

Following market risk types are calculated and presented separately and together within Monte 
Carlo Simulation (s. Chart 7.): 

 Only FX Risk
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 Only Share and Stock Index Risk

 Only Interest Rate Risk

 Only Spread and spread Index Risk

 Total Risk

 Incremental Risk

 Marginal Risk

 VaR Standard and Expected Shortfall at Confidence

 
Incremental VaR 
The Incremental VaR (IVaR) of a position with respect to a portfolio can be thought of as the 
amount of risk that the position is adding to the portfolio (s. Chart 8). In other words, Incremental 
VaR tells us how the VaR of our portfolio would change if we sold a specific position. Incremental 
VaR can be formally defined as the difference between the VaR of the total portfolio and the VaR 
of the portfolio without the position: 

 

Marginal VaR 
The Marginal VaR (MVaR) exposes the potential effect that buying or selling a relatively small 
portion of a position, for example 1 %, would have on the overall risk (s. Chart 8). For example, in 
the process of rebalancing a portfolio, we often wish to decrease our holdings by a small amount 
rather than liquidate the entire position. Marginal VaR (MVaR) is a statistic that provides 
information regarding the sensitivity of VaR to changes in the portfolio holdings. 

 

Expected Shortfall 
Expected Shortfall (VaR-ES) is a subadditive risk statistic that describes how large losses are on 
average when they exceed the VaR level, and hence it provides further information about the tail 
of the P&L distribution. Mathematically, we can define Expected Shortfall as the conditional 
expectation of the portfolio losses given that they are greater than VaR. Expected Shortfall is 
useful statistic that provides valuable additional information and is important to measure flat tailed 
distributions. 



13 
 

13 
 

 

 

 
 

Chart 7. Market Risk Evaluation Dialog 
 

 
Ser Num Action Include 

(Mark) 

Not Amount Coupon Instrument 
Type 

Curr Total VaR Incremental 
VaR 

Marginal 
VaR 

209896 Long * 1 000 000,00 4,00% Bond EUR 7 056,10 7 056,10 -70,56 

A0AHHM Long  1 000 000,00 5,50% Bond EUR    

Porfolio       7 056,10   

209896 Long  1 000 000,00 4,00% Bond EUR    

A0AHHM Long * 1 000 000,00 5,50% Bond EUR 12 584,33 12 584,33 -125,84 

Porfolio       12 584,33   

209896 Long * 1 000 000,00 4,00% Bond EUR 6 929,04 5 860,17 -79,16 

A0AHHM Long * 1 000 000,00 5,50% Bond EUR 12 647,90 11 515,89 -105,28 

Porfolio       18 444,50   

 

Chart 8. Excel Export of Total Marginal and Incremental VaR 
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3.3 Simulation Parameters 

Following main market simulation parameters are used to control the Monte Carlo Simulation (s. 
Chart 7.): 

 Number of Monte Carlo runs: usually 4.000, but larger number of runs is possible.

 Horizon days: holding period, default 1 day, can be set for example to 10 days.

 Valuation Date and Date of Correlation Matrix in the data base.

 Confidence Level, for example 99% and corresponding multiplier for standard deviation

3.4 Price Distributions and Drilldowns 

The Monte Carlo simulation generates price distributions (s. Chart 9.) and measures according to 
risk types above for every interested hierarchic level: 

 

 On position level: single Position VaR, VaR-ES, FX-VaR, Marginal and Incremental VaR etc.

• Measures as on position level for portfolio and subportfolio level aggregates according to 
portfolio structuring in PMS: The calculation is performed for all hierarchic levels while same 
simulation runs, because of pricing expressions that represents position prices, but are 
extended by sum’s to represent the whole portfolio structure. Interested portfolio pricing 
nodes are marked to accumulate results for distributions while simulation runs.

 
 

 

Chart 9. Price Distribution of Portfolio 
 

All data generated data before and while Monte Carlo Simulation can be shown for every risk 
driver in a separate window (s. Chart 10). Correlated random series and result series can be 
exported to excel for further analysis. 
It is possible to select a worst case (red marked value row), i.e. left from confidence value, to treat 
it as a stress test scenario and to store all correlated changes for the risk drivers as a scenario for 
subsequent use in the scenario manager of PMS. 
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Chart 10. Show Monte Carlo Series and Prices 
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4. Detailed Example of VaR Calculation using Monte Carlo Simulation 

 
4.1 General Remarks to Monte Carlo Simulation 

The calculation of market VaR for financial instruments using Monte Carlo Simulation is based on 
a set of approaches and assumptions: 

 

• The market VaR of a position in a financial instrument is a probable negative move of the 
price value of the position as result of negative correlated move of the underlying market 
factors such as interest rates, foreign exchange rates or spreads which influence the 
price value. 

• The negative move of the price value is accounted for given risk horizon, for example 1 
day or 20 days from valuation date and for a selected confidence level, for example 95% 
or 99%. 

• Te price value of the position at the valuation date is known, but for the risk horizon the 
price value can be estimated by a distribution of the price value having expected value 
and confidence value (i.e. a value left from distribution corresponding to confidence 
level). The VaR of the position (or of a portfolio) is then given by: 

 
VaR = expected value – confidence value 

 

• Monte Carlo simulation is used to generate the distribution of the price values on risk 
horizon calculating different price values for a large set, for example 5000, of correlated 
scenarios of the underlying market factors. These 5000 price values represent the 
needed price distribution. 

• The first step in running the Monte Carlo simulation on a position (or on a portfolio) is the 
representation of pricing model (formulas to calculate the price value) in a effective way 
so that this model can be calculated 5000 times at different market conditions effectively. 

• An effective representation of the pricing formulas is an arithmetic expression tree 
including arithmetic operators such as -, +, /, *, stochastic variables for the market factors, 
constants and option elements to represent option rights. 

• The second step includes the generation of correlation matrix and volatility vector for all 
needed market factors from historic series for these factors. The matrix and the vector 
are then used to create large set of synthetic scenarios for the market factors. 

• These scenarios for the market factors are the used to simulate the pricing model where 
a set of small correlated changes (the scenarios) is applied on the market factors within 
the tree representation for every Monte Carlo run. 

• The result from pricing model is the stored for every Monte Carlo run and is used then to 
represent the price distribution and as basis to calculate the expected value and the VaR. 

 
This section describes in detail the presentation and the simulation of an example swaption 
instrument showing the swaption conditions, the pricing model, the pricing expression tree and 
the simulation and VaR results. 

 

4.2 Example Instrument: Swaption 

 
4.2.1 Contractual Agreement for Swaptions 

A swaption is an swap option granting its owner the right but not the obligation to enter into an 
underlying swap on the option exercise date. The term "swaption" typically refers to options on 
interest rate swaps. There are two types of swaption contracts: 

 

• A payer swaption gives the owner of the swaption the right to enter into a swap where 
they pay the fixed leg and receive the floating leg. 

http://en.wikipedia.org/wiki/Option_%28finance%29
http://en.wikipedia.org/wiki/Swap_%28finance%29
http://en.wikipedia.org/wiki/Interest_rate_swap
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• A receiver swaption gives the owner of the swaption the right to enter into a swap where 

they will receive the fixed leg, and pay the floating leg. 
 
The buyer and seller of the swaption agree on: 

 

• the premium (price) of the swaption 

• the strike rate (equal to the fixed rate of the underlying swap) 

• length of the option period (which usually ends two business days prior to the start date 
of the underlying swap), 

• the term of the underlying swap, 

• the currency of Swaption and underlying swap 

• notional amount, 

• amortization, if any 

• frequency of settlement of payments on the underlying swap 
 

Swaptions can be viewed as options on the "fixed" side of a swap. This follows from the 
theoretical assumption of a liquid market on which it is possible at any time without additional cost 
to enter into a swap with fixed coupon equal to the forward swap rate. 

 

4.2.2 Pricing Approach for Swaptions 

Swaptions can be priced using Black-model based on following assumptions: 
 

• In a liquid market, it is possible at any time T to enter the "fair" payer or receiver swap at 
the forward swap rate. By definition F is the (Foward) swap rate, those recruited from 
today's perspective the underlying swap as fair (swap price is zero). In other words, the 
forward values of the fixed and of the variable swap sides are equal. 

• This results then the payoff function depending on the forward swap rate F and on the the 
strike rate S (equal to the fixed rate of the underlying swap) of a receiver swaption, as 
follows. 

 

PayoffReceiver (F) = cash-flow payment of the fixed swap side is the max (S-F, 0) 
 
The swaption holder could go down for any realization of the swap rate F at time T at no-costs a 
payer forward swap on the basis of the forward swap rate. Payments from the variable site from 
the receiver swaption and the corresponding income from the payer swap cancel each other out. 
Remaining are negative payments from the Payer Swap (-F) and the revenues from the receiver 
swap (S). Since this structure is optional, the option holder will choose this construct only if S> F, 
in the other case he don’t exercise the option and contract the underlying swap. 

 
With the usual assumptions of the Black-model (the Volatility of F is log-normally distributed with 

) the price of the swaption can be calculated as the expected value of the payoff function 
discounted to the valuation date: 

 

PreisRecSwaption (F)   Nominal * PriceFact or *  (S*N(-d2 )   F*N(-d1  ) ), 
 

where  
Nominal the nominal value of the swaption (and of the underlying swap) 

PriceFactor Sum(DF(ti)) *  / Number of Payments per Year 
DF(ti) discount factor for cash flow date of Cashflow(i) 

 period length of the fixed side of the swap 
N (.) The standard normal distribution function 

d1 = ln ((F / S) +  
2  

T / 2) / ( sqrt (T)) and 

d2 = d1 -  sqrt (T) 
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T duration of the swaption 
S strike rate of the swaption (coupon of the fixed side of the swap) 
F forward rate of the swap 

 Volatility of F p.a. 
 

Analog the price for a payer swaption is given by: 
 

PreisPaySwaption (F)   Nominal * PriceFact or * (F N(d1 )   S N(d2 ) ) 
 

 

Calculation of the forward rate F of the swap is based on the fair condition: 
 

PV(Float Side) = PV(Fix Side), i.e. 

 
iEnd 

 
DF(tStart )  DF(tEnd  )



DF(tStart )  DF(tEnd  )  F  dt(ti1 ,ti ) DF(ti ) 
iStart1 

F    
iEnd 

dt(ti1 ,ti 

 
) DF(ti ) 

 
where 

 

DF(ti) discount factor for time point i 
ti end date of period i 
dt(i-1, i) period length between i-1 and i 
tStart, tEnd start and end date of the swap 

iStart1 

 
 

The above pricing model includes following elements into pricing formulas: 
 

1. Stochastic elements: 
Discount Factor nodes DF(i) for the Price Factor and for the forward rate F 

Black-Model node using S, F and  (for the duration T it is  sqrt (T)) 
2. Non-stochastic elements: 

Constant nodes (period length, Nominal, strike S, duration T in years) 
Arithmetic operators nodes (+, -, /, *) 

 

4.2.3 Data of an example Swaption 

 
Chart 11. shows the data and static results of an example swaption used to explain the simulation 
approach. Following contract data are important with respect to the pricing model: 

 

• Nominal Amount = 1 000 000 in EUR 

• Exercise Swap Rate S = 2.9%, Forward Swap Rate F = 2.9164% 

• The Market Volatility  of Forward Swap Rate F is 28.01% 

• Position is Long, i.e. we should pay the Option Value 

• The underlying swap is a payer left side swap (the fix side) = payer swaption 

• The market factors are the zero discount factors of the evaluation curve EUR-Swap. 

• The life of the Swaption is exactly 1 year, the life of the swap is exactly 3 years, so the 
relevant market factors are the discount factors on the points 1, 2, 3 and 4 years 

 
The contractual conditions of the swaption and of the underlying swap are simplified (equal 
frequencies, 1 year periods, Day count = 30/360) for better understanding of the simulation 
approach. Charts 12, 13 and 14 show the data of the underlying swap. 



19 
 

19 
 

 

 

 
 

Chart 11. Definition of example Swaption 
 

Chart 12. Underlying Swap 
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Chart 13. Left fixed side of the swap 
 
 

 

Chart 14. Right floater side of the swap 
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4.2.4 Representation of the example Swaption on Piricng Tree 

 
The pricing model from above can be rewritten for the example swap as follows: 

PaySwaptionValue(EUR) = Nominal(EUR) * PiceFactor * BlackCallOption(F, S, (T)) 

PiceFactor = DF(EUR-Swap, 2Y) + DF(EUR-Swap, 3Y) + DF(EUR-Swap, 4Y) 

F = (DF(EUR-Swap, 1Y) - DF(EUR-Swap, 4Y)) / PiceFactor 
 

Here  
  = 1 period length of the fixed side of the swap 
n = 3 number of swap periods (from year 1 to year 4) 
T = 1 duration of the swaption 

(T) =  sqrt (T) =  Volatiluity of forward swap rate 
 
 

After replacing example swaption data into formulas above we receive formulas that can be 
represented by fast pricing tree used for the Monte Carlo simulation: 

 

PaySwaptionValue(EUR) = 1 000 000 * PiceFactor * BlackCallOption(F, 0.029, 0,2801) 

PiceFactor = DF(EUR-Swap, 2Y) + DF(EUR-Swap, 3Y) + DF(EUR-Swap, 4Y) 

F = (DF(EUR-Swap, 1Y) - DF(EUR-Swap, 4Y)) / PiceFactor 

 

The corresponding pricing tree is shown on chart 15. 
 

. 

Chart 15. Pricing Tree Example 
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The Price Factor is a sum of discount factor nodes, the Forward Swap Rate F make use of the 
Price Factor as divisor. The Black Call Option is applied on the Forward Swap Rate F against the 
Strike and assumes the volatility of the Forward Swap Rate F. The Option Price is then multiplied 
by the Nominal and by the Price Factor. Except for the Option node the tree representation is 
based only on two-operand arithmetic operators which are elements of the pricing formula. 

 
4.3 Simulation der Swaption 

The Simulation is based on Monte Carlo simulation scenarios for a large set of runs, for example 
4000. The Monte Carlo scenarios are obtained from Correlation Matrix and Volatility Vector for 
market factors obtained by historic statistic over their time series as shown in Section 2. The 
correlation matrix and volatility vector for the example swaption are given below. The volatility  
was calculated on daily basis. The example VaR simulation was performed without including the 
Vola risk factor assuming zero volatility of the implied volatility and for this reason the Vega part  
of the swaption risk will be ignored. In case of including the Vega risk, we should have historic 
time series for the implied volatility and include corresponding volatility and correlation into 
missing row and column of tables below. 

 

Correlation Matrix for Swaption Simulation 
 

 EUR-Swap 
1 Year 

EUR-Swap 
2 Years 

EUR-Swap 
3 Years 

EUR-Swap 
4 Years 

Implied 
Volatility 

EUR-Swap 1 Year 1 0.2215 0.2564 0.1266 … 
EUR-Swap 2 Years 0.2215 1 0.8202 0.7799 … 
EUR-Swap 3 Years 0.2564 0.8202 1 0.9135 … 
EUR-Swap 4 Years 0.1266 0.7799 0.9135 1 … 
Implied Volatility … … … … 1 

 
 

Volatility Vector for Swaption Simulation 

 
Market Factor Matrix Risk Grid Point Volatility 
EUR-Swap 1 Year Money 42 0.00029899 
EUR-Swap 2 Years Swap 182 0.00132174 
EUR-Swap 3 Years Swap 183 0.00198575 
EUR-Swap 4 Years Swap 184 0.00264766 
Implied Volatility … … 

 
 

The simulation is performed using following steps: 
 

• Set up the simulation parameters on Chart 16. (in the example simulation to 4000 runs, 
Confidence level = 99%, Horizon of risk = 1 day). The simulation process is started with 
the Recalc button 

 

• The correlation and volatility for needed risk factors of the swaption are extracted from 
large correlation matrix on 31.03.2008. The correlation matrix and volatility vector are 
calculated in advance based on the historic time series. 

 

• The market factors are not the market rates, the corresponding discount factors are used 
as market factors which simplifies the simulation. The discount factors are calculated 
from market rates using curve bootstrapping before running the statistic and the 
calculation of the correlation and the volatility of the discount factor daily performance. 
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• A set of 4000 normal distributed and correlated scenarios are calculated before 

simulation for all risk factors, this is in fact a matrix of 4000 x 4 of normal distributed and 
correlated random samples with mean 0 and volatility 1. A lot of corrections of the 
random samples are performed (s. 2.2.5 above). 

 

• The pricing tree for the swaption according to chart 15. is constructed in the memory.  
This is in fact a representation of the pricing formula for the swaption that will be 
simulated, i.e. the pricing formula is calculated 4000 times. The tree representation 
allows for very fast calculation because the interpreting pricing routine is small and it can 
be hold in the processor cache memory. 

 

 

Chart 16. Monte Carlo Simulation of the example Swaption 

 
• Before the simulation the static actual values of the market factors are applied on the 

market factors of the tree (in the example this are the discont factors on 1, 2, 3 and 4 
years, and eventually the implied volatility) 
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Chart 17. Simulation Distribution of the Swpation price series 

 
• For every Monte Carlo run the module obtains the next set (row) of normal distributed 

and correlated samples, multiplies this vector with the volatility vector and applies 
exponentially the small changes as scenarios on the static actual values. The whole tree 
is then calculated by recursive procedure which obtains the price on the top node of the 
tree. This price is stored, so after 4000 runs the price series of swaption prices can be 
used to give the resulting distribution and statistics. 

 

• The distribution mean and VaR are then obtained from swaption price series (s. Chart 
17.) The distribution is skewed and not normal, it should be close to log-normal because 
of the used Balck-model. 

 

• The distribution mean (the expected value) is 9348.39 and it is close to static calculation 
of 9294,16 (Theoretical Value on Chart 11.). The VaR is calculated from distribution to 
2982.01. The calculation of the confidence value is simple, 1% (100% - 99%) of 4000 
prices is 40 prices. The price series is sorted into ascending order, so the 40-en price is 
the confidence value and VaR is then: confidence value – expected value. 

 

• The price values according to scenarios are represented on Chart 18., for every set of 
correlated samples of the 4 factors a new price value is calculated. The confidence value 
(the yellow row on Chart 18.) is obtained after ordering the price value series. 

 

• Cahrt 19. Show detailed representation of primary risk factor series (market interest 
rates) and of secondary risk factors sereis (discount factors obtained after bootstrapping 
every historic market curve within the historic period, ussually 1 year). 
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Chart 18. Simulation of risk factors and calculation of the price value series 
 
 

Chart 19. Detailed representation of the risk factors 
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5. Spread VaR Calculation using Monte Carlo Simulation 

 
5.1 Further Remarks to Monte Carlo Simulation 

The calculation of market VaR for financial instruments using Monte Carlo Simulation is based on 
a set of approaches and assumptions given in 4.1 General Remarks to Monte Carlo Simulation. 
Following further remarks are outlined additionally below: 

 

The pricing formula implemented as closed formula on the simulation tree can be different from 
pricing model at static price calculation within portfolio for many reasons: 

 

• Only a small set of RGP (Risk Grid Points) represents the interest rate risks, i.e. 1 Mo, 3 
Mo, .. , 1Y, 2Y, .. . For these RGPs there are volatility and correlation in the market risk 
matrix. So all intermediate cash flows are mapped on the existing grid points using 
splitting on the left and on the right GRP. This splitting is neutral related to volatility and 
PV of the original cash flow, but at skewed Monte Carlo distributions the expected value 
achieves not exactly the static PV. 

 

• Only a small set of RGP (Risk Grid Points) represents the credit spread risks. Similar 
splitting as for interest rates is used for intermediate future time points, where cumulated 
default probabilities, i.e. PDs along the time axis, are needed 

 

• Options are represented by Black-Nodes, so no other option types, i.e. exotic or path 
dependent, etc., can be simulated. These options are mapped to Black-Options. 

 

• Instruments that use a numeric pricing model, like HW, can’t be simulated on the 
simulation tree because of performance and missing closed pricing formulas. These 
instruments are approximated by key rate sensitivities and restricted Taylor expansion. 

 
This section describes the presentation and the simulation of an example asset instrument which 
embeds credit risk involved by CDS spread curve connected to the instrument. The pricing model 
for the expected loss, the pricing expression tree, the simulation and the VaR results are shown. 

5.2 Pricing Approach for Spread Risk 

The spread risk calculation for assets is based on the calculation of expected loss and uses 
following approaches: 

 

• Spread risk is a credit risk measured with the premium changes for credit default swaps 
on the CDS market. 

 

• It is a risk that by deterioration in the creditworthiness of the Reference Entity while the 
CDS will increase premiums and thus the hedging costs, respectively the risk of losses 
are also increasing, so the spread risk as unexpected loss is the risk of  the expected 
loss. 

 

• Fair Value (asset) = risk free value (asset) – Expected Loss (asset), where 
 

Risk free value (asset) is calculated with the risk free curve 
Expected Loss (asset) is calculated on the spread curve 

 

• On the CDS market the fair-price of CDS = 0 fixes the fair premium for each maturity. 
 

• Reference entities are countries, firms, concerns, CDS indices (CDX: iTraxx ® Europe). 
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• The Spread is a premium of a credit default swap. Spread Curve incorporates premiums 

for standardized maturities: 6Mo, 1, 2, 3, 4, 5, 7, 10 years. 
 

• The expected loss calculation is performed using a periodic approach: 

Expected Loss = sum (Expected Loss (i) * Discount Factor(i)) 

Expected Loss (i) = EAD(i) * PD(i) * LGD(i) 

Expected Loss (i) = NA * Marginal PD(i) * (1-Recovery Rate) 

Marginal PD(i) = Cumulative PD(i) - Cumulative PD(i-1) 

Where  
EAD(i) Exposure at default of the asset for Period i 
PD(i) Probability of default for Period i 
LGD(i) Loss given default for Period i 
Cumulative PD(i) PD(0,i) Probability of default from T0 to end of Period i 
Discount Factor(i) DF(0,i) Risk free discount factor to end of Period i 

 

• According to above formulas the risk of the expected loss (the spread risk) depends on 
changes of the Cumulative PDs and on changes of the Discount Factors, so the spread 
risk depends on risk free evaluation curve and on asset specific spread curve or spread 
index. 

 

• A spread index is interpreted as a flat spread curve up to max maturity of the asset. 
 

• The simplification assumptions for the calculation of the expected loss are: 

o The EAD(i) = NA, i.e. the exposure does not depend on market or on 
amortization payments and is = Notional amount. This assumption can be 
changed using for the EAD(i) the forward asset price to time point i 

o The Recovery Rate within the LGD(i) is constant for all periods. 
o The Cumulative PD(i) exists or it can be represented by splitting on left and right 

RGP. 
o The period frequency is usually 3 months. 

 

• The Cumulative PD(i) can be obtained from premiums of the spread curve by 
bootstrapping 

 
Bootstrapping: Calculation of PDs from CDS spread using implications between premium and 
spread: 

 

Expected Loss (spread) = Present Value (premium) 

Example calculation at following conditions: 

Simple payment of 100 € at time t = 1 year 
Risk-free interest rate = 4%, CDS premium = 2%, Recovery rate = 45% 

Calculation: 

Present value (premium) = 100 * 0.02 / (1 +0.04) ^ 1 = 1.92 € 
Expected Loss = 100 * PD (1 year) * (1-recovery rate) 

 

PD (1 year) = 1.92 / (100 * (1-0.45)) = 3.49% 
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Risk-free present value = 100 / (1 +0.04) ^ 1 = € 96.15 

Risk present value = 96.15 - 1.92 = € 94.23 

Implied yield spread (spread on the evaluation of curve): 
 

Risk present value = 100 / (1 +0.04 + Yield Spread) ^ 1 = € 94.23 
 

Yield Spread = 100 / 94.23 - (1 + 0.04) = 2.12% 
 
An extended description of calculation of the expected loss and of the bootstrapping method is 
given in the document Spread Calculator description v3.doc. 

5.3 Monte Carlo Simulation to obtain Spread VaR 

 
The representation of the VaR distribution with and without included spread risk is given on Chart 
20. The simulation of spread VaR involves a set of steps: 

 
 
 

 

Chart 20. Representation of distributions with and without spread risk 

 
• Inserting of the CDS curves factors as risk grid points into risk grid points list. 

 

• Calculation of the market risk volatility and correlation matrix bootstrapping the historical 
spreads of curve vertices into cumulative PDs per maturity. 

 

• Construction of an expected loss simulation tree based on formulas for calculation of the 
expected loss above or from document Spread Calculator description v3.doc before 
simulation. 

Expected valaue 

without spread risks 

Probability 

0 Asset value 

Expected valaue 
with spread risks 

Interest + Spread VaR 
simulation distribution PMS 

Monte 
Carlo 

PMS 
Monte 
Carlo 

Bad rating 

Interest + Spread VaR Interest VaR Spread Expected Loss 
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• Subtract this tree from simulation tree of the credit risk free asset according to formula: 

Fair Value (asset) = risk free value (asset) – Expected Loss (asset) 

• Simulation of the asset together with all other assets within portfolio and create the Monte 
Carlo distribution for risky asset, i.e. including expected loss risk. 

 

• Obtain the VaR results: 
 

Interest rate VaR, spread VaR, total VaR, Incremental and Marginal VaR, etc. 

 

• The spread VaR is calculated separately using blocking of all other RGPs except the 
RGPs (Cumulative PDs) from bootstrapped spread curve. 

 
The subtraction of the expected loss tree from simulation tree of an asset involves two effects: 

 

• The common distribution is moved to the left by the expected value of expected loss 

 

• The distribution becomes additional volatility because of volatility of expected loss, i.e.  
the distribution includes correlated effects of interest rate and spread volatility. 

 
The bad issuer rating causes higher CDS premiums and therefore higher cumulative PDs. Thus, 
the expected loss and the volatility of expected loss become higher, so the distribution moves to 
the left as shown on Chart 20. 

 

5.4 Spread VaR Simulation Example 

 

 

Chart 21. Single fix bond in a portfolio 

 
The calculation of spread VaR on Monte Carlo simulation tree will be shown for a simple asset 
example. The analysis portoflio from Chart 21. includes only one fix bond position. The currency 
of the bond and of portoflio os EUR. The calculation is performed on 31.03.2009. 

 
 

The bond exposes two payments according to panel parameters: 



30 
 

30 
 

 
 

 
• 500 000 EUR on 31.03.2010 as interest rate payment 

• 10 500 000 EUR on 31.03.2011 final redemption of the notinal amount of 10 000 000 
EUR + 500 000 EUR interest rate payment 

 
 

 

Chart 22. Bond data details 

This cash flow structure will produce very simple simulation tree consisting of two nodes for 
discount factor on 1 year and on 2 years which coincide to RGPs of the EUR-Swap market curve 
assumimg it is credit risk free. 

 

A spread risk calculation is included for the bond as a result of selection of a CDS spread curve in 
the Field Credit Risk Curve on Chart 23. Current premiums per maturity from spread curve are 
given in the Spreads and PD browser. Cumulated PDs and marginal PDs are obtained by 
bottstrapping from the CDS premium. The ISDA Standard CDS bootstrapping method is used for 
the bootstrapping. 

The expected loss is the calculated to be 307 910,13 EUR using a periodic approach and 3 
months periods. The calculation of the expected loss is shown on Chart 24. Periodic expected 
loss calculation for the example bond. 
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Chart 23. Expected loss calculation: bootstrapped CDS Curve 
 
 

Chart 24. Periodic expected loss calculation for the example bond 

The RGPs of the spread curve are included into market risk correlation matrix together with the 
RGPs of evaluation curve and all other market risk factors. However, the example bond needs 
interest risk RGPs only till 2 years and only 2 RGPs from spread curve. The Monte Carlo 
simulation module extracts from large correlation matrix only 6 RGPs given in table below. They 
are 4 interest rate RGPS and 2 spread curve RGPs. 
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Risk Grid Points within market risk matrix for the example bond 

 

 
Global Monte Carlo matrix: Risk Grid Points: 6 Volatility 

 0 1 2 3 4 5   

0 1 0,5228 0,1195 0,3833 0,0497 0,1217 [EUR Y090 EUR Money] 0,0007% 

1 0,5228 1 0,037 0,8427 0,0668 0,1676 [EUR Y180 EUR Money] 0,0022% 

2 0,1195 0,037 1 0,0205 0,6456 0,0705 [EUR Z001 BASF-AEUR-MMCM] 12,5450% 

3 0,3833 0,8427 0,0205 1 0,0349 0,1705 [EUR Z001 EUR Swap] 0,0083% 

4 0,0497 0,0668 0,6456 0,0349 1 -0,0016 [EUR Z002 BASF-AEUR-MMCM] 8,1285% 

5 0,1217 0,1676 0,0705 0,1705 -0,0016 1 [EUR Z002 EUR Swap] 0,1426% 

 
 

 

 

  

Chart 25. Spread risk simulation tree: bond tree – expected loss tree 

The simulation tree of the total risk (bond + expected loss) is given on Chart 25. The simulation 
tree follows exactly the pricing formula of bond including expected loss. The bond pricing tree is 
shown on the left and it consists of two discount factor nodes for 1 year and for 2 years. The 
expected loss part realizes the formula: 

 

Sum ((Cumulative PD(i) - Cumulative PD(i-1)) * Discount Factor(i)) * NA* (1-Recovery Rate) 
 

There are totally 8 summands in the sum corresponding to 3 months periods within 2 years 
maturity of the bond. Every summand includes the term: Marginal PD(t) * Discount Factor(t). The 
marginal PD(t) is represented as difference of Cumulative PDs at period begin and at period end 
and by splitting on the left and right spread RGP. The same splitting is done for the discount 
factor too. The sum is the subtracted from bond tree, the result after the subtraction is then 
multiplied by NA of 10 Mios and by the 1-Recovery Rate = 0,6. The representation of the 
simulation tree assumes fixed EAD = NA. The simulation structure should be changed if the 
development of the EAD along the time axis should be recognized according to forward bond 
calculation. 
The price distribution is obtained by price calculation on the tree for every Monte Carlo scenario 
starting on the VaR node and using recursive procedure along the simulation tree. 

Simulation: Volatility Vector and Correlation Matrix 

Spread risk simulation tree Recov. Rate 

1-0.4 

* 

+ 
1 

+ 
2 6 

Expected 

Loss 
  VaR  

0 
+ 

Bond 

Price 

- 

* 

+ + * 
- 

Marginal 

PD 

0.05 1.05 x 1-x y 1-y 

DF(1Y) DF(2Y) DF(1Y) DF(2Y) CPD(2Y) CPD(1Y) Nominal 

10 000 000 
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Chart 26. VaR results in PMS 

The simulation results are presented on chart 26. A spread VaR of 58 491,28 is calculated on the 
tree by blocking the scenarios on the interest rate nodes, i.e. only the CPD nodes are simulated 
in this case, all other nodes remain static for all simulaton runs. 

 
 

 

Chart 27. Monte Carlo simulation series for the 5 RGPs 
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Chart 28. Monte Carlo simulation distribution for total VaR 

Charts 27. and 28. show the simulation scenarios and the resulting distribution for total VaR. 


