

1

NLP using database context
Zheni Mincheva1, Nikola Vasilev1, Dr. Anatoliy Antonov1, Dr. Ventsislav Nikolov1

1Eurorisk Systems Ltd, 31 General Kiselov Street, 9002 Varna, Bulgaria

jmincheva at eurorisksystems dot com, nvasilev at eurorisksystems dot com, antonov at eurorisksystems dot com,

vnikolov at eurorisksystems dot com

Abstract
The usage of natural language in the industry has become more prevalent in recent years. Nowadays it is

much easier to operate with complex infrastructures using natural language. Feature semantic parsing

represents one of the tasks of converting natural language utterances into structured logical parts that can

be used as queries to generate responses. This paper introduces an algorithm that transforms natural

sentences in order to obtain structural results. Such a functionality is effective for Question and Answering

(Q&A) and allows for spoken language understanding (SLU). Queries are being executed on specific tables

or databases. The process of generating queries implies different operational steps, such as recognition of

different types of words, synonym detection, feature grammar parsing, etc.

Introduction

Problem definition
Nowadays, more and more systems are

introducing speech assistants. It’s commonplace

for people in this day and age to use voice

commands, i.e. make calls, schedule

appointments, change settings, options and

access information using simple everyday words

of their natural language. For that reason, it is

necessary to simplify modern technology and

build tools that make it possible to access large

amounts of information easily and everywhere.

With the evolution of the industry, more and more

tools will be replaced with simpler ones. And

what could be simpler than a sentence? This

paper proposes an approach that automatically

translates natural language into SQL syntax

queries. In this way, users will be able to obtain

the required information from database tables

without the nuisance of technical details. The

overview of this approach is shown in Figure 1.

The suggested solution is intuitive and automatic.

It is easily accessible and can be applied to any

context. The only input information required is an

OLAP table. All other details and specifications

are generated automatically from the context of

the provided table.

Figure 1. Overview of the approach

NLP explanation
Natural language processing (NLP) combines

linguistics and computer science. It is related to

the interaction between the natural language of

humans and computers. This paper observes the

request for information, using limitations and

clauses for the grouping and ordering of results.

The request is given in a natural language and is

being translated into an operation understandable

to computers. Currently, this request can be

obtained from voice commands or written

sentences.

Client side

Input

Results

 Parsing
application

OLAP
data

Internal DB

NLTK

SpaCy

Server side

Return the results

Internet

Sent query sentence

mailto:jmincheva%20at%20eurorisksystems%20dot%20com
mailto:nvasilev%20at%20eurorisksystems%20dot%20com
mailto:antonov%20at%20eurorisksystems%20dot%20com

2

Technical environment

Python
The majority of modern solutions regarding

natural language processing are created using

Python. Python is high-level programming

language that supports a variety of well-

developed and widely used frameworks for

language processing, including spaCy, NLTK

and others. The solution presented in this paper is

based primarily on Python 3.7, along with other

Python libraries described below.

Natural Language ToolKit (NLTK)
Even though Python can perform natural

language processing tasks on its own, NTKL is a

good extension that enables the execution of any

type of NLP tasks. NLTK contains various

modules and has an open-source license.

Additionally, it offers a functionality for

importing grammar and using it to parse text. [1]

SpaCy
SpaCy is an open-source library for advanced

natural language processing. There is a

functionality that perfectly defines numbers, time

periods and exact dates given in conversational

form. For example, it can detect “last year” as a

time period and 29th of September as a date.

Structured Query Language – SQL
SQL is a standard language for dealing with

databases and is used in programming and for

managing data in relational databases. SQL has

specific syntax and grammar. The purpose of the

proposed application is to automatically translate

sentences as expressed by humans into queries in

SQL that are understandable to computers.

Intent recognition with RASA
The first step in this process is intent recognition.

This is important because the assistant can be

connected to more than one OLAP table. Since

those tables include information for different

contexts, intent recognition is used to determine

which table to access. RASA is a great tool for

intent recognition. In order for intent recognition

to function properly, it is necessary to train the

RASA neural network. This is achieved by giving

it examples for each intent. After being trained,

the network is able to calculate a percentage for

the probability of an input having the encounter

intents. Thereafter, an intent is recognized and the

input can be used in the key replacement phase.

[2]

Observed data
The OLAP table is a flat virtual Cartesian table

created from other real tables that are linked

together and is used by OLAP reporting systems,

such as QlikView and QlikSense. OLAP tables

contain two types of data – measures and

dimensional data. Dimensional values are usually

enumerable and are used for grouping and

filtering. Measures can be represented in the form

of dates or numerical values. Numerical measures

are generally used for aggregation and

conditions. Date measures are used for the

representation of date points or periods. A data

scientist must first define an OLAP table (or use

an existing one) using the corresponding format

in order to proceed, which is fundamental to the

data analysis. OLAP tables provide fast access to

large data sets, as all analytical operations are

performed on already fetched data and operations

are completed in the memory. There is no need

for all data to be pre-fetched from the database,

providing operations “on the fly”. The module

also requires a configuration that includes the

selected columns and synonyms for the column.

Methodology

Pre-processing

Date parsing
Dates are complicated data structures for

language processing. In the presented module,

dates are differentiated into two types – an exact

date that specifies a particular date point, and a

date range, representing a time period. Dates can

be expressed in two forms – implicit and explicit.

The implicit form is a self-evident format, e.g. ‘27

of April’. The explicit form defines more

complex structures, such as ‘2 years ago from last

3

Sunday’ or ‘for the last four years’. All dates are

masked with specific keywords that can easily be

recognized later in the grammar parsing.

Additionally, dates are stored into a common

format in order to avoid errors and be more

general.

Number replacement
In contrast with dates, numbers are simpler for

recognition. All numbers are normalized

according to the same format and masked with a

specific keyword, i.e. „NUMBER”. Later, the

masked values are obtained and used to form an

SQL query.

Key word replacement
Key words are used in the sentence when asking

the system for information. Those words do not

cover stop words, which will be considered later.

Key words consist of five word sets. The first

includes synonyms for column names. When a

word from this set is detected it the input and is

known, it is referred to the corresponding

column. The second set of words contains all

distinct values from every enumeration column

within the OLAP table. The third set is used for

all words that express comparison, e.g. bigger,

higher, smaller, less. The last two sets contain

synonyms for grouping and ordering, which

represent very important parts of the query, as

they prioritize information according to the user

criteria.

Query parsing
After the key words are loaded, each word from

the input is being searched for in the sets and, if

found, is replaced with a corresponding word that

provides information on the word meaning. For

example, all column synonyms are replaced with

the key word that contains the column name and

has a “SYNONYM” suffix. If a distinct value is

found in the input, it is replaced with the

corresponding column name. For instance, the

input ‘French’ would be replaced with

region_value, because it is a distinct value from

the column region.

Removing of stop words
The SpaCylibrary provides a list of stop words

that include words that have no meaning to the

application, such as ‘also’, ‘the’, ‘to’, ‘are’, etc.

Such words are removed. All words that are left

unmapped and do not represent stop words are

listed as incorrect words. Incorrect words are

processed by the edit distance algorithm [3]. It is

assumed that those words are not recognized by

the microphone or misspelled if written in a

query.

Edit distance algorithm for incorrect

words
The edit distance algorithm generates the

probability of a word being confused with

another word or combination of letters similar to

the word in question. The algorithm calculates the

percentage difference between the words, based

on misplaced letters. It takes into account the

closeness of the syllables, of letters, as well as the

position of keyboard keys. The algorithm

distributes negative points according to the error

made and depending on what must be done to

make the necessary corrections to match it to the

desired word. The final percentage is calculated

using those points. [4] [5]

In this particular case, three threshold values can

be distinguished.

The first is used for an automatic replacement of

words. This value is the highest. If the value of

similarity between the words is higher than this

automatic replacement threshold, the word is

replaced without human interaction. The formula

(1) for this calculation is

+’:

𝑇1 = 1 −
1

𝑙
 (1)

where 𝑇1 is the threshold value and 𝑙 is the

number of characters in the incorrect word. If 𝑇1

is bigger than 0.92, it is set to 0.92. If it is lower

than 0.75, it is set to 0.75.

4

The second threshold value limits the possible

choices presented to the user when choosing the

correct word. It is calculated using the following

formula (2):

𝑇2 = 1 −
3

𝑙
 (2)

where 𝑇2 is the threshold value and 𝑙 the number

of characters in the incorrect word. If 𝑇2 is higher

than 0.75, it is set to 0.75. If it is lower than 0.5,

it is set to 0.5.

All words with a similarity bigger than 𝑇2 and

smaller than 𝑇1 are compiled into a list and

presented to the user to choose from them.

The third threshold value is 0.25. If the similarity

between the incorrect word and any of the distinct

and key values is lower than 0.25, the word is

marked as irrelevant and is removed.

Values 0.92, 0.75, 0.5 and 0.25 are preferred and

are chosen because of the high accuracy detected

during the testing process.

Grammar Parsing
After the pre-processing, the query is parsed and

words from the input sentence are replaced with

key words that are recognized by the grammar.

Parsing of queries is a process of analyzing the

sequence of key words in a sentence, that have

met a previously defined set of rules. Those rules

define the parsing grammar.

Since each SQL select query is composed of

separate parts, the input should contain structured

information that can be mapped to any of those

parts. The grammar should not only recognize

them, but take into account the natural language

order.

The main structure of grammar rules is

disintegrated into smaller rules that are reusable.

Each rule is enplaned later.

Sentence ->
Sentence OrderingPart | ColumnPart
WherePart GroupPart | ColumnPart |
ColumnPart WherePart | ColumnPart GroupPart

The main part of an SQL select query is the

column part, in which the required columns are

enumerated. It has the following syntax:

“SELECT revenue, revision_year, name, ect”.

This is the only required part of the query. All

other parts are optional. Generally, columns are

described using synonyms. If a user wants to see

specific information from columns, he uses one

of the corresponding synonyms. Synonyms are

obtained from sources studying language

synonyms and are carefully prepared by people

that are familiar with the natural language and the

database (data scientist). ColumnNames list

synonyms for all columns.

ColumnPart -> AllWord | ColumnNames

The where part describes the conditions in the

WHERE statement. Users can ask for data in

several ways using conditions. Since OLAP

tables have two main column types, the grammar

depends on those types. The where part points to

each clause, that describes a request, to a column.

In the end, the recursion part is added, which is a

very important and elegant way of calling more

than one condition, in any particular order.

The where part contains restrictions and filters

that specify the requested information. In other

words, it describes the conditions in the WHERE

statement, which is the most complex part. It

contains rules, combined into different parts, for

each column of the OLAP table. Those parts are

generated automatically using a supportive

database. Such database contains descriptions of

different columns and defines the way the

grammar is supposed to operate with them. Since

OLAP tables have two main column types, the

grammar depends on those types. The where part

points each query, that describes a filtering

request, to a column. For each column type there

are several approaches for requesting

information.

The statements are pre-processed and specific

parts are replaced by others that are recognizable

5

by the grammar. Following is an example of the

description of a measurement type column.

Examples for the covered cases are “revenue is

less than 100” or “revenue is 50 or more”. This

part is also generated.

revenueClause ->
revenueSynonyms Comparative Number |
revenueSynonyms Number Comparative

Measurement conditions use comparative words.

Comparatives are loaded from the same database

as the synonyms. A lot of words are replaced in

the pre-processing. They are replaced with one of

the four possible comparatives:

• ‘positive’ are clauses for words ‘greater’

(more than, above, greater, etc.)

• ‘negative’ are keywords that contain

most of the words for ‘lower’ (less than,

to, behind, etc.)

• ‘equality’ (is equal to) ‘

• difference’ (is different than, is not)

Comparative[SEM='COMPARATIVE'] ->
'positive' | 'negative' | 'equal' |
'different'

Dates represent measures, but the syntax for their

query is somewhat different. Sometimes

comparative words might be omitted and their

meaning then refers to an exact point. In other

cases, ‘greater’ (‘positive’) or ‘smaller’

(‘negative’) synonym words are predefined.

revisionDateClause ->
revisionDateSynonyms Comparative Date |
revisionDateSynonyms Date

In the pre-processing phase of the input text, all

numbers are replaced with this word so they can

be parsed in the grammar. Input numbers are

stored as attributes for later use in the final query.

Number[SEM='NUMBER'] -> 'NUMBER'

In the same manner as numbers, dates are

normalized and replaced by keywords in order to

avoid the mismatching of formats, as well as to

benefit the lightweight syntax of the grammar.

Dates are stored as attributes for later use in the

final query. In this case, the UTC format will be

used for the definition of the query.

Date[SEM=’DATE’] -> ‘DATE’

If the referred column is from a dimensional type,

e.g. region, then it is limited by the following rule

in the grammar:

regionClause ->
regionNames regionSynonyms |
AllWord regionSynonyms | regionNames

Following is an example of the description of an

enumerable column. It illustrates the case where

the value “all regions” is selected, or any

enumeration of column values, with or without a

definitive word. The covered cases are:

• regionNames regionSynonyms

most commonly used, followed by a

synonym, e.g. “Italian region”

• AllWord regionSynonyms

this is a case when all values are taken

into account, e.g. “all regions”

• regionNames

only the value of the given distinct value

is considered, e.g. “Italy”

The above explained rules refer to all columns,

depending on their type. The defined rules are

added to the where clause, thereby defining the

limitations of the query.

The where part is followed by the grouping part,

after which comes the ordering part. Grouping is

most commonly used for columns that are

defined utilizing the dimensional type. In cases

where the information is hard to assimilate

because of its magnitude, the grouping part uses

a combination of rows. Usually, when there is a

grouping part, there is an aggregation in the

column part that is generated automatically. All

columns containing the measure type are

6

aggregated using the sum function, except for

columns that contain dates. Since the sum of dates

is not in use, the depicted information shows the

minimum and maximum value of the column. In

the grammar, the grouping part is presented as:

GroupPart -> GroupSynonyms ColumnNames
GroupSynonyms[SEM='GROUPING'] -> 'GROUPING'

The ordering part is the last part and refers to the

ORDER BY clause in the query, which allows the

sorting of result set by one or more columns. Two

sorting options are available: ascending and

descending. These options are optional. By

default, the sorting is in the ascending order. In

the grammar, this part has the following syntax:

OrderingPart ->
OrderingSynonyms ColumnNames |
OrderingPart OrderingStyle |
OrderingStyle OrderingPart

OrderingStyle[SEM='ORDERING_STYLE'] ->
'ASC' | 'DESC'

OrderingSynonyms[SEM='ORDERING'] ->
'ORDERING'

In this context, the grammar can be automatically

generated. Since the information is retrieved from

an OLAP table, this makes it easier to generate

clear grammar.

Creating the Table Query
Once the parsing of the input using grammar is

performed, it is certain that the input is

convertible to a data base query. The output is

represented in the form of a tree which, when

iterated, provides a query of a size equal to the

input query size. It contains labels of

corresponding positions that describe the

semantics of the word for this position in the input

query. Semantics and inputs are used in the

making of the query. This is achieved by

extracting the recognized words and placing them

in an output query in the proper construction,

containing, for example “SELECT …. WHERE

….”.

In the cases described above, generated queries

will have a syntax as shown below:

What is the revenue and the number of

employees of companies Lenovo and Sony

in the Dutch and French region, grouped by

region?

Common SQL syntax query:

SELECT revenue, employees_num,
company_name, region
FROM OLAP_TABLE
WHERE (company_name = 'sony' OR com
pany_name = 'lenovo')
 AND (region = 'italian'

 OR region = 'french')
GROUP BY region

Result can be illustrated in the form of:

• Tables

reve
nue

employees
_num

company_
name

Region

…. …. sony French

…. …. ….. …..

• Text (suitable for single row results)

revenue = …. and employees number = …..

Show me region and company for all

companies with revenues bigger than 100

Common SQL syntax query:

SELECT region, company_name, revenue
FROM OLAP_TABLE
WHERE revenue > 100

Here the results can be shown in the form of:

• Tables Table 1

Table 1 Example of the query results.as a table.

region company_name revenue

french sony 120

italian sony 130

french lenovo 130

Figure 2. Example of a chart of the query results.

7

italian lenovo 120

• Charts (suitable for more complex

results) Figure 2

A query is successfully parsed when all words are

recognized, and are in order that is acceptable by

the grammar.

Figure 3 shows the main steps of the application’s

algorithm. First, the information is loaded from

an OLAP table, which represents the main input

for the generation. The distinct values from the

OLAP table are loaded and recorded in an

internal structure used later in the process. This

information, provided in the structure, is used for

the generation of the grammar. Once the grammar

is generated, it is ready to parse sentences that are

obtained from voice or text. Each word in the

sentence must be recognized and labeled. The

words that are recognized represent distinct

values and synonyms, which are added to the

input query for more flexibility. Unlabeled words

are marked as incorrect and are sent for

corrections. After the corrections are made, the

words are replaced in the input. Once the sentence

is completely corrected, it is parsed and used in

the process of generating queries. All words that

are found in the input should be recognized and

labeled, so the grammar can parse them. Parsing

of the grammar represents a process of checking

the order of words in a sentence. The order must

match the predefined rules of the grammar.

Consequently, the query is generated and, if

valid, it can be executed and the retired results

can be displayed in various formats, such as

tables, charts or even voice.

Figure 3. Overview of the steps of the algorithm.

Results
The OLAP table is comprised of five columns,

which contain the name of the company, region

of the located branch, revenue of the

corresponding branch, the revision year and

number of employees. Company name and region

columns are dimension type data, while all others

represent measure types. The table contains

10000 records.

The internal database contains supporting

information that are required for the grammar

generation. Figure 4 shows the model of the

internal database.

Loading the distinct
values from the

OLAP table

Generating
grammar

Obtaining the
sentence from

microphone or text

Making corrections
of words if
necessary

Parsing the query Executing the query

Returning the
result to the device

in proper format
(table, chart)

114
116
118
120
122
124
126
128
130
132

sony sony lenovo lenovo

french italian french italian

revenue

8

Figure 4. The internal database relational model.

META_INFO includes the properties of each

column. and contains the column name, types and

classes. Types provide information on the kinds

of values that can be found in this column, which

are. String, Number and Date. These values are

described in the COLUMN_TYPES table.

Classes represent types of data that are stored in

columns and are classified into dimensions and

measures. They are located in the

COLUMN_CLASSES table. Table

DISTINCT_VALUES contains distinct values

from all columns. The SYNONYMS table stores

synonyms that can be used to designate columns.

There are two additional tables that contain

information on key words, such as “more”,

“bigger”, “smaller”, “less”, etc. Those key words

are used throughout the entire application and are

not connected specifically to columns.

In order to test the described algorithm, a Python

porotype application is build. It uses a Python Qt5

library for visualization and basic functionalities.

The input for the sentence can be in the form of

voice or text. After that, the natural sentence is

automatically converted to an SQL query.

Additionally, an intermediate result of the parsing

is provided showing only the meaningful word by

removing the stop word and other unnecessary

information. Then, if all the parsing and

validation stages are successful, an SQL query is

displayed and results are shown in table format.

Here the given sentence is ‘What is the revision

and revenue of Nvidia and Disney in the Italian

and British region, ordered by revision’. After

the parsing of results, the algorithm provides the

following query, which matches the given

criteria:

SELECT revision_year, revenue FROM

OLAP_TABLE WHERE (name = 'nvidia' OR

name = 'disney') AND (region =

'australian' OR region = 'british')

ORDER BY revision_year

The application needs to show the input taken

from the user, the corrected sentence that is

“understood” by the application, the final result

of the parsing, as well as results from the query.

Figure 5 illustrates a prototype for the desktop

application. The algorithm can be used from a

desktop application, a web browser or mobile

application. [6]

Figure 5. Prototype the application.

However, if the input is misspelled, the

application requires an additional interaction with

the user in order to correct the incorrect word.

Consider the following example: ‘give me namess

and rewenues for cissco sorte by region’. This

sentence has several errors. The algorithm

automatically substitutes some words, such as

rewenues, namess, sorte, since they come very

close to their correct counterparts. With others,

additional interaction is needed. Figure 6 shows

a window in the application, where users can

choose from a list of alternative words, according

to the given probability of similarity.

9

Figure 6. Prototype of the corrections suggestions.

For further details, a log is provided, where the

automatic actions and performance benchmarks

can be seen. A screenshot of the log is shown in

Figure 7 below. All parsing results are performed

almost immediately, within less than a second.

Figure 7. Prototype of the log.

Future developments
The main logic of the application runs on a server,

so it can be accessed from anywhere. The

proposed solution provides information in a user-

friendly and flexible manner. Since smart phones

have become such an indispensable part of our

lives, it can be made possible for the application

to be accessed from mobile devices. It could also

be accessed via a web browser or desktop

application, depending on the user needs.

Further developments will include multi-

language support and interactive conversation,

thereby enabling the usage of aggregation

functions, such as sum, average, max and min, as

well as ordering and chart type selection of the

result table for the primary data request.

Conclusion
Natural language represents an easy way to

obtain desired information without the necessity

of spending additional time to learn the required

technical details. The solution presented in this

paper can be used in different contexts. For

example, obtaining needed information “on the

fly”, using only simple sentences.

References

[1] J. Perkins, Python text processing with NLTK 2.0

cookbook over 80 practical recipes for using Python's

NLTK suite of libraries to maximize your natural

language processing capabilities, Birmingham, U.K.:

Packt Pub., 2010, p. .

[2] T. Bocklisch, J. Faulkner, N. Pawlowski и A. Nichol,

„Rasa: Open Source Language Understanding and

Dialogue Management,“ p. .

[3] A. A. Plamen Paskalev, „Intelligent Application for

Duplication Detection,“ CompSysTech’2006, 2006.

[4] P. P. Anatoliy Antonov, „Increasing the performance of

an application for duplication detection,“

CompSysTech’2007, 2007.

[5] D. Skurzok и B. Ziółko, „Edit distance comparison

confidence measure for speech recognition,“ в Lecture

Notes in Electrical Engineering, 2013.

[6] M. Aiello, Y. Yang, Y. Zou и L.-J. Zhang, Artificial

Intelligence and Mobile Services – AIMS 2018 7th

International Conference, Held as Part of the Services

Conference Federation, SCF 2018, Seattle, WA, USA,

June 25-30, 2018, Proceedings, 1st ed. 2018.. ред., M.

Aiello, Y. Yang, Y. Zou и L. Zhang, Ред., Cham:

Springer International Publishing : Imprint: Springer,

2018, p. .

10

Appendix: Examples

1. Example of the usage of the word ‘all’ in the column part.

Input: Give me all for Nvidia.

Output: SELECT * FROM OLAP_TABLE WHERE (name = 'nvidia')

11

2. Example of the grouping criteria.

Input: Give me all for Nvidia and Lenovo, grouped by company and region.

Output: SELECT name, region, sum(revenue) , min(revision_year), max(revision_year) ,

sum(employees_num) , count(*) FROM OLAP_TABLE WHERE (name = 'nvidia' OR name =

'lenovo') GROUP BY name, region

12

3. Example of the ordering criteria.

Input: What is the revenue and revision of Adobe and Cisco in the German and Spanish region,

sorted by region firm?

Output: SELECT revenue, revision_year, region, name FROM OLAP_TABLE WHERE (name

= 'adobe' OR name = 'cisco') AND (region = 'german' OR region = 'spanish') ORDER BY region,

name

13

4. Example of the ordering criteria

Input: Give me the revenue region and name for Sony and Nvidia in the Brazilian, Swedish and

Swiss region, ordered by revenue in desc.

Output: SELECT revenue, region, name FROM OLAP_TABLE WHERE (name = 'nvidia') AND

(region = 'brazilian' OR region = 'swedish' OR region = 'swiss') ORDER BY revenue DESC

14

5. Examples of asking human-like questions.

Input: What is the revenue and revision of Honda for the Swiss region?

Output: SELECT revenue, revision_year FROM OLAP_TABLE WHERE (name = 'honda')

AND (region = 'swiss')

