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Abstract: In this paper an approach is proposed for the prediction of the behavior of time series. In order to 

achieve that various subseries with fixed length are formed from the initial data series, which are then 

grouped into clusters based on their shape. The data kept in the clusters for each of the subseries are the 

relative differences between all of its consecutive values. This enables these differences subseries to be 

averaged to form a single series for each cluster. These cluster centers are used for the prediction of 

nonexistent future values.  
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ПРЕДСКАЗВАНЕ НА ВРЕМЕВА СЕРИЯ БАЗИРАНО НА КЛЪСТЕРИЗАЦИЯ 

 
Сиво Даскалов, Венцислав Николов 

 

Резюме: В този доклад е представен подход за предсказването на поведението на времеви серии. За 

да се постигне това, от началната серия се образуват множество подсерии с фиксирана дължина, 

които в последствие се групират в клъстъри в зависимост от формата им. Данните съхранявани в 

отделните клъстъри за всяка от подсериите са относителните разлики между всеки два съседни 

елемента. Това позволява осредняването на групата от подсерии в една за всеки клъстър. Тези 

клъстърови центрове се използват за предсказването на несъществуващи бъдещи стойности.  

 

Ключови думи:  Предсказване, клъстеризация, самоорганизиращи се карти, времева серия, 

изкуствен интелект. 

 

1. Introduction 
 

The prediction is of great importance in many domains. Economics, finance, the public sphere, 

technologies and many physical processes are amongst the ones that benefit greatly from 

predictions. The predictions can often be inaccurate but there are a number of different approaches 

to overcome this problem. First of all indicators for predictability of the available historical data 

exist. If the data is not identified as predictable then mathematical methods could be applied but 

would hardly produce good results. Secondly, the predictions cannot be considered as sole indicator 

values but rather as most probable values with a given confidence levels. Thus the predicted values 

can be substituted with ranges of values in accordance with the level of confidence. 

The prediction methods are divided into two main categories: univariate and multivariate. The 

univariate prediction methods take into consideration only the data available as historical 

information while multivariate methods use dependencies between a number of additional factors as 

well as the historical data. This paper presents an approach for univariate time series prediction. The 

time series used here are considered to be discrete, that is, their values have been obtained in equal 

time intervals. 

There are many well-known approaches for univariate time series prediction: the classical Box and 

Jenkins methodology [1]; regression based methods [3] like autoregressive (AR), autoregressive 

moving average (ARMA), autoregressive integrated moving average (ARIMA), seasonal 
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autoregressive moving average (SARIMA), self-exciting threshold autoregressive (SETAR) [8]; 

soft-computing methods (neural networks) [7, 9, 11, 13], decomposition based methods (e.g. Holt-

Winter), Kalman and Wiener filtering, etc. Each one of them has its specific characteristics and 

performance, having both advantages and disadvantages, and some of them are based on the 

extrapolation principle. 

The approach proposed here is based on building of a mathematical model which combines 

subseries grouping obtained from the historical series and performing of multistep iterative 

prediction. The overall time series prediction consists of two stages. In the first stage the historical 

time series is used to build the model and in the second stage the model itself is used for the 

production of an arbitrary number of future values. The method is applicable only for series for 

which there are dependencies in the time development of the series. If the time series is completely 

chaotic with nonrelated values the method will also work but will not produce satisfactory results. 

 

1. Time series preprocessing 

 

In order to avoid problems related to infinitely increasing trend and series nonstationarity, the time 

series has to be preprocessed. Linear approximation is used to find such a line that the root-mean-

square error (1) between the line and the time series is as low as possible – fig. 1. 

 

RMSE =  √
∑ (ŷi−y)2n

i=1

n
                                                          (1) 

 
Fig. 1. Linear approximation of a time series 

 

The slope of the approximated line is then calculated (2) and if this slope is within (-0.1, 0.1) the 

time series X is stored by its original values, otherwise the series Y is created from the original time 

series X as for every element the relative difference (3) to the previous element in X is calculated 

and stored. 

 

m =
y

x
                                                                       (2) 

 

y(t) =
x(t)−x(t−1)

x(t−1)
                                                              (3) 
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If the time series is stored by its elements' relative differences, the initial values can be restored by a 

combination of multiplication and addition (4). 

 

x(t) = y(t) ∗ x(t − 1) + x(t − 1)                                                 (4) 

 

This restoration of the original time series is possible because the first value in the time series has 

been stored and the differences between every other value and the previous one are known as well. 

 

 

2. Model building stage 

 

Most of the time series prediction methods use previous historical values in order to produce the 

next value (5): 

 

𝑦(𝑡) =  𝑓(𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … , 𝑦(𝑡 − 𝑘))                                         (5) 

 

Thus, the mathematical model can be built analyzing all possible subseries of length k. Graphically 

this is shown in fig. 2 where the initial time series is separated into n-k+1 (n=23, k=5 in the 

example) subseries where n is the time series length and the k is model order. In one of the most 

commonly used autoregressive methods this subseries are considered as matrix rows and through 

these rows a set of parameters is calculated which is later used in the prediction stage to produce the 

future values. In our approach, the subseries are assigned into a given number of groups which can 

be considered as clusters. The assignments should be performed in such a way that the distance 

between the subseries within a group should be minimal while the distances between the subseries 

in different groups should be maximal. A distance between the subseries could be calculated in an 

arbitrary way, for example through the Minkowski distance algorithm. Various clustering 

algorithms could be used for the grouping of the subseries: k-means, ISODATA, hierarchical 

clustering, self-learning neural networks [4, 6, 10, 12].  
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Fig. 2. Segment breakdown of a time series 

 

For each segment, the relative change between each of its consecutive elements is calculated and 

stored. The resulting vectors are then grouped into clusters through one of the clustering algorithms. 

This achieves a clustering [2, 4] by segment shape as shown in fig. 3. 

The subseries shown in fig. 2 are additionally separated in two parts. The first one is of length k-1 

and the second one consists of only the last value. The clustering is performed considering only the 

first subseries part, but the second part remains attached to it. The clustering for the given time 

series in fig. 2 is shown in fig. 3.
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Fig. 3. Segment clusters formed from the initial time series 

 

When the subseries groups are determined, each cluster's center for each of the groups is calculated. 

This is achieved through the calculation of the average value of all subseries' values at the specified 

index according to (6). The first k-1 values of the cluster's center are compared with an arbitrary 

segment while the last value is kept for the actual prediction of the next element. Various clusters 

and their calculated centers are shown in fig. 4. 

 

𝐶(𝑖) =  
∑ 𝑌(𝑗,𝑖)

𝑝
𝑗=1

𝑝
, 𝑤ℎ𝑒𝑟𝑒 𝑝 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑠𝑒𝑟𝑖𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟                  (6) 

 

 
Fig. 4. Segment structure 
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3. Prediction stage 

 

The prediction is an iterative multistep process. In every iteration a single value is generated by the 

model built in the previous stage. Fig. 5 illustrates the prediction process. The process consists of an 

arbitrary number of repetitions of the main prediction cycle. The cycle consists of the following 

operations: 

 

a) A segment with length k-1 is extracted from the current end of the time series. This is not 

necessarily the original time series as predictions could have already been appended. 

b) The extracted segment is compared to all the cluster centers in a consistent way with the 

comparison in the clustering phase. The cluster with the smallest distance to the segment is the 

cluster winner similarly to the competitive learning principle. 

c) The cluster winner is the one that best matches the segment and it is chosen to provide the 

prediction value for the current iteration. The prediction value, formed as an average of the last 

values of all contained segments, is extracted from the cluster winner. 

d) The value is calculated in accordance to the chosen cluster's prediction value (7) 

e) The calculated value is appended to the end of the time series and process is repeated from step 

a) until the desired future values are obtained. 

𝑦(𝑛 + 1) =  y(n) ∗ c(n − 1) + c(n − 1),                                             (7) 

 

Here c is the cluster center of the best matching segment and n is the current length of the series 

 
Fig. 5. The main prediction cycle 
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4. Conclusion and future work 

 

Although the algorithm's performance is expected to be high because of its simplicity, the 

prediction capabilities of the proposed approach are yet to be evaluated. Moreover, the algorithm 

does not take into consideration the possibility of approaching the zero and going towards negative 

values which may be a valid concern in some application fields. In addition to that a comparison 

needs to be conducted between this approach and various other time series prediction algorithms to 

evaluate its benefits and drawbacks. 
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