

1

Rule-Based Conversion of UsiXML-based GUI Description

Plamen Paskalev, Ilka Serafimova

Eurorisk Systems Ltd.

31, General Kiselov Str., 9002 Varna, Bulgaria

Е-mail:

ppaskalev аt eurorisksystems dot com

iserafimova аt eurorisksystems dot com

ABSTRACT

The paper considers a realization of an approach for

converting a UsiXML-based GUI definition to a

proprietary format of a WEB-based application. The

conversion is realized as a rule based solution using CLIPS

engine. The advantages of the selected approach and the

technical realisation are discussed. The results from

implementing the solution are debated. The integration

with an existing GUI handling solution, storing the

definition in a database is discussed.

KEYWORDS

GUI description, UIDL, UsiXML, Rule based, CLIPS,

Computer Systems and Technologies

INTRODUCTION

The user interface is an essential part of every application.

The development of GUI has to answer many requirements

– from reasonable and robust handling of the information

shown or received to user-friendly, predictable and

consistent design. Implementation of the main obligatory

parts of the GUI (such as showing or hiding controls or

groups of controls, making fields read-only, etc.) leads to

program code which is hard to read and support. GUI

design is especially complicated in case of complex client-

server oriented systems, where large amounts of data have

to be shown. The programmer tasks were simplified with

introduction of high level programming languages (e.g.

Java, C# etc.) and technologies for web based application

development (e.g. JSF, ASP.NET, etc.). Nevertheless, the

design is still a challenge in case of complex applications.

The problems like different types of hardware on client

machines, different resolutions and multi-language support

are combined with problems of grouping the data in

correspondent logical hierarchy, implementing the logic

behind the dialog layer and controlling the input. The

approach of development of a separate solution for every

special case is not an option due to the enormous amount of

work. To answer these problems, the concept of UIDL

(User Interface Definition Language) has been introduced.

With its foundations in User Interface Management

Systems (UIMS), introduced in 1980s [15], the UIDL

concept allows designers to describe the interactive

behaviour in a high-level form, which gives a higher level

of abstraction over the input – output devices.

Another aspect, which adds complication to the user

interface handling, is inclusion of some aspects of

Intelligent User Interfaces (IUI) in the application logic.

The attempts to trace user behaviour, to determine the user

expertise level, to maintain a knowledge base with most

common user activities, action sequences and failures and,

based on this knowledge, to undertake some dynamic

changes in the GUI in order to help the user in his

interaction with the application make the GUI design even

more difficult and complex.

The basic theoretical matters and related works will be

covered by the end of the introduction. The technologies

used in the proposed solution will be discussed in the next

two chapters. Further, the prototype tasks and goals will be

defined. A detailed module description will follow. And

finally, conclusions about the research will be made and

future works will be stated.

Graphic user interface generation

The concept of user interface description language (UIDL)

allows designers to abstract the description of the GUI and

thus separate it from the application business logic. This

abstraction gives the possibility to use the description in

different manners. It can be converted during application

release building to a static user interface implementation or

it can be interpreted at runtime. The implementation of the

2

user interface management systems (UIMS) based on the

used UIDL is crucial for the application design. The former

lightens the designers work, but also allows easy GUI

consistency support across the application [19]. However,

problems like isolating the designer from the control of the

low level details in the visualization and other UIMS usage

problems, as well as the standardization of user interface

components did not allow a wide acceptance of the UILD

concept [15].

In the next years the concept of UIDL solved some of the

above-mentioned issues like different screen resolution,

multi-platform applications, multi-language support with

the introduction of new interaction technologies and

devices.

The objectives of UIDL implementations are [11]:

• To capture the requirements for a user interface as an

abstract definition that remains stable across a variety of

platforms.

• To enable the creation of a single UI design for

multiple devices and platforms.

• To improve the reusability of a user interface.

• To support evolution, extensibility and adaptability of a

user interface.

• To enable automated generation of user interface code.

Related works

The usage of XML as a UIDL base is very widespread.

There are numerous suggestions such as UIML [1], XIML

[18], TERESA XML [14] etc. The solutions [7] using data

base description are not universal but tightly task-dependant

and are used in applications with many different users.

The usage of database description of GUI was discussed in

[17]. A solution for generation of unified GUI generation,

based on modular components is proposed in [6].

GUI DEFINITION USING USIXML

One of the UIDL solutions and frameworks developed in

recent years is UsiXML [10]. It is an XML-based context-

dependent UIDL which provides various levels of

abstraction: context-independence, platform-independence,

etc. UsiXML allows specifying of multiple models involved

in user interface design such as: task, domain, presentation,

dialog, and context of use, which is in turn decomposed into

user, platform, and environment. These models are

structured according to the four layers of the Cameleon

framework [2]: task and concepts, abstract user interface

(AUI), concrete user interface (CUI), and final user

interface (FUI). Intermodel mapping is used to support

relationships between these models [8].

A FUI lies at the bottom of the Cameleon framework. It is

platform dependent and is either interpreted (e.g., through a

Web browser) or executed (e.g., after compilation of code

in an interactive development environment). A CUI

abstracts the UI definition as independent from any

computing platform, but it is environment dependent. A

CUI is also considered a reification of an AUI at the upper

level and an abstraction of the FUI with respect to the

platform. An AUI abstracts the UI definition as independent

of any modality of interaction (e.g., graphical interaction,

vocal interaction, speech synthesis, etc.). An AUI is

considered as an abstraction of a CUI with respect to

modality. At the top of the framework is the Task and

Concepts level where the interactive task carried out by the

end user is defined according to their viewpoint. Task and

Concepts are considered class instances representing the

concepts manipulated [9].

UsiXML is a preferred technology for the research of this

article because it is an XML based UIDL with a wide range

of possibilities and several GUI abstraction levels. It has a

number of user-friendly and easy-to-use editors (such as

GraphiXML[12] and Sketchi-XML[3]) thus covering one

of the main problems of the previous solution, discussed in

[16, 17].

For the purpose of this experiment CUI description is used

since the solution realizes a graphic user interface which is

environment dependent. The concrete JSF interpreter is

used as a testing tool for the generated or converted GUI

descriptions.

USER INTERFACE DYNAMIC MODIFICATION

Applications which interact with people allow the

introduction of intelligent and dynamic behaviour which

improves the communication between the former and the

latter. The details of user input can be gathered and

afterwards examined using intelligence engine. The user

interface is then rearranged on the bases of that analysis.

The enhancements concern:

• Dynamic control of complicated application views with

large amount of heterogeneous data to be shown (e.g.

health information systems, financial software, complex

industry controlling software, etc.) to reduce the level of

complexity for easier development and testing.

• Automatic construction of intuitive user interfaces

according to the user experience to facilitate their

interaction with the system and decrease the necessity of

regular on-line help and application description usage.

3

• Adaptation of the user interface to changing user

expertise level to provide detailed information depending

on the user knowledge and goals.

An approach, used for the realization of the GUI of a WEB

based application which realizes some aspects of IUI was

presented in [16]. The main goal of that project was to

create an environment, which would allow an easy

extension, manipulation and dynamic modification of the

GUI, based on the

a) data to be displayed

b) investigation of the behaviour of the user

(See Fig. 1.)

Rules (Level 2)

Facts’’(GUI description)

Rules (Level 1)

Facts (GUI description)

Facts (User Model)

Facts (Data)

Facts’ (GUI description)

GUI

Rules (Level 0)

GUI Definition (usi)GUI Definition (DB)

CLIPS engine

Figure 1: GUI Dynamic Modification project

The kernel of the project was realized as a rule-based

solution (Fig. 1, [17]) based on a CLIPS [5] engine. The

advantages of the CLIPS engine usage were discussed in

[16, 17]. Several layers of rules were developed for this

purpose. That prototype solution was based on GUI

description, located in a database. Although the results from

the tests with the application, built using that approach,

were positive, it became clear, that some extensions are

necessary. The problems which were identified during the

tests can be grouped in the following two categories:

• Development problems – during development of the

test user interfaces it became clear, that the

development of the modules without graphical tool is a

time and effort consuming task. The absence of

validation for the GUI description was also reported as

a problem during the development stage.

• Run time limitations – Keeping of the GUI definition

in the database, despite the advantages, contains some

drawbacks, especially in cases, when the application

has more simple structure and is not using database

itself.

The current article discusses the attempt of the authors to

solve these problems using UsiXML and implementing a

rule-based converter between the GUI descriptions, built

using the two approaches. The input and the output of this

module have identical structure thus it is transparent to the

GUI interpreter.

The conversion between both descriptions can be realized

in different ways. The rule-based approach is the natural

solution because it provides flexibility; ease of integration

with the existing solution and ability to cooperate with the

other layers of GUI manipulation (Fig. 1) which are

developed in the same way. The conversion with the rule-

based engine and the usage of the same internal

representation in both cases (UsiXML and database

description) makes the form of the structure transparent. In

this way the application logic, which uses and manipulates

the GUI description, remains unchanged.

TASKS AND GOALS

Several aims are defined for the research application

prototype of this article. They arose naturally as an

evolution of a previous development [16, 17]. The solution

should use UsiXML as a GUI description language as well

as previously used database description. The application

has to provide a converting mechanism which can transform

UsiXML to database GUI description and vice versa. The

following advantages are pursued while designing the

prototype:

• The discussed solution attempts to provide a graphic

environment (a UsiXML editor) for GUI description

definition in order to improve the usability of the

proposed interpreter. The approach should allow

designers who are not familiar with the underlying

technologies to describe GUI fast and easy. The tool

should be used to define new or rearrange existing

application views without the need to recompile the

application for them to take place in the system.

• The XML schemas should provide validation of the

description at an initial level to prevent propagation of

problems in the system.

4

• The solution, discussed in [16, 17] uses GUI definition,

stored in a database. In some cases, the usage of a GUI

description, located in XML files on the server is the

preferable solution. For some applications all the

additional tasks related to the “GUI in DB” approach,

including the database access, administration and user

restrictions, are too complex and therefore must be

avoided. The application developers will be able to

fulfil this requirement using the suggested solution.

• The discussed tool should provide easy-to-use

export/import functionality. UsiXML description gives

the opportunity to realize the latter since the XML

standards are widely used in case of server-server

communication and in case of web services.

However, the proposed interpreter should combine the

abovementioned advantages with the ones of a description

of the GUI placed in a database. The most essential of them

are:

• The usage of the database as a description container

will enhance the reusability of groups of logically

connected controls or sub-groups among different

views in the application avoiding duplication. The

groups can be used as building elements for complex

structures thus improving readability.

• The database organization allows the definition of so

called exclusion rules for hiding single controls or

groups in a specific hierarchy of components thus

implying polymorphism.

• The database supplies straightforward utilities of user

authorization policy.

Both UsiXML and database descriptions are platform

independent. As far as both realize the UIDL concept they

isolate the GUI description from the domain business logic.

They are flexible, robust and the parsing of a description

written in any of the former is not time consuming. The

conversion mechanism between the two provides the

interpreter with the combination of the UsiXML and

database description advantages.

SOLUTION OVERVIEW

Application structure

The approach discussed in this article consists of (Fig. 2):

• XML description – with respect to UsiXML schema of

CUI description. In the current solution GrafiXML[12]

editor is used to generate it;

• User interface description structure in a database;

• Converter, which translates UsiXML to database

description and vice versa – an intelligence engine

realized in CLIPS;

GUI

Presentation Layer

Business Layer

knowledge base GUI descriptionData

GUI Description

GUI Description’

UsiXML
files

Rule-based
 Engine (CLIPS)

Figure 2: GUI generation process

• Intelligence module for GUI enhancement [16].

• Description interpreter realized in Java [17].

The solution is integrated in a server-side WEB application,

designed to work with financial information (financial

instruments, environments, etc.). The description is

organized into groups of components, which facilitate their

reuse in visualization of different instruments. The

discussed approach is applicable in any domain where

complex data is arranged in reusable logical units.

Fig. 2 presents the process of the GUI generation. First the

GUI description is built. It can be extracted from the

database directly using SQL statements over the description

tables. On the other hand, the former can be obtained from

a UsiXML description. The controls from the latter are

loaded into the CLIPS engine as facts and after some rules

have been applied to them the modified facts are converted

back and proceeded to the business layer. On the next step

additional information is extracted from the database:

information about the currently selected instrument, which

is also hierarchically organized (instrument, legs, cash

flows, etc.), and information about the current user

activities. All these three, including the description, are

passed to the CLIPS engine once more for the GUI to be

enhanced by the application of other rules. The format of

Java objects, used before and after the conversion to CLIPS

facts is identical, so the inclusion of the rule-based

approach does not need any additional changes in the data

representation and logic on the application server. Finally,

the description is translated to a JSF component tree and

displayed to the user.

5

The separation between the two passes in the CLIPS engine

allows a background conversion between UsiXML and

database formats. Thus, a UsiXML description can be

imported into the database without a graphical

representation, so does the export of a database description

into a UsiXML file.

Business objects

The GUI description hierarchy consists of (Fig. 3):

• Controls (leaves in the hierarchy) which describe

simple GUI controls like inputs and selects;

• Groups which contain controls and/or other groups

(sub-groups). The groups on the highest level have special

interpretation. For example, part of them represents tab

control in a common tab holder of a form;

• Forms, defined with their identifiers, describing the

views of the application;

• An instrument defines the financial instrument type to

be shown on the GUI.

per Object

Sub Group

Group

Sub Group

SubGroup

Control

Control

Control

Control

Sub Group

Group

Sub Group

SubGroup

Control

Control

Control

Control

p
e

r
F

o
rm

Figure 3: GUI description structure

Description element belongings such as control-group,

group-group or group-instrument relations are also defined

along with the (X; Y) coordinates of the element in its

parent. Other components of the element description are

control type, data binding, validation and presentation

information, etc. The discussed solution supports complex

control types like tables and charts.

SOLUTION KERNEL

XML Description

The XML schema used in the discussed solution is

developed by the UsiXML team [13]. GrafiXML was used

to generate the example for this article (Fig. 4).

Figure 4: GrafiXML editor

Using the above-mentioned editor, a simple CUI

description was generated. It was edited by adding custom

attributes to its elements supplying specific information for

the JSF description like validator, converter, etc. A

fragment of the result .usi file is shown in Fig. 5.

Figure 5: .usi file example fragment

6

GUI Description Converter

The main module of the discussed solution is the converter

that translates a description in one format to another format.

If a description is defined in a UsiXML graphic editor it is

read from the.usi file to a Java tree and the tree is processed

to the intelligence CLIPS engine as facts. After that, some

rules are applied to the latter altering the knowledge base

(Fig. 6).

Figure 6: Description converter example rule

Next a new tree with the same structure as the input one is

formed based on the final facts. The resultant Java tree can

then be stored as a database description to the

aforementioned database tables or it can be directly

interpreted to a JSF component and then displayed in the

user browser.

The mechanism can work in the opposite direction. A

description might be read from the database, then processed

to the CLIPS engine and finally stored as a usi file or

interpreted as HTML.

The rules applied to the CLIPS facts adjust the structure of

the tree nodes. For example, in the database descriptions a

control element contains information (Fig. 7) about the

control and its adjacent label (e.g. label “Market price” with

the value of 100.00) but the in UsiXML description the

label and the control are specified as separate XML

elements.

The presentations in all the levels (JSF component tree,

Java internal representation, CLIPS template definitions)

are the same, regardless of the type of the used source.

After applying the rules on the facts, defining the UsiXML

components, they are converted to facts, fully compatible

with the ones, created based on the database source.

GUI DESCRIPTION INTERPRETER

After being loaded the GUI description is represented as a

Java tree in spite of the source (database or XML). Next, it

is converted to a JSF component tree. Java Server Faces

(JSF) is a Java based WEB technology which was chosen

for a variety of reason like support from any Java container

(e.g. Tomcat, Apache, etc.); capacity; easy extensibility [4],

etc. The interpreter is realized as a custom component

which simulates a tab control. The latter renders only the

necessary data according to the selected tab.

The generated tree has the following structure:

root - attached to the standard JSF view tree;

 `-1st level - tab views;

 `- 2nd level - layout tables;

 `-… nested layout tables;

 `- leaves - simple or complex controls.

Figure 7: Description in the database (fragment)

(defrule read_only_type

 ?ro_control<-(control_template

(type ?itype&"false" | "null"))

=>

 (modify ?ro_control (type "RO"))

)

(defrule read_write_type

 ?rw_control<-(control_template

(type "true"))

=>

 (modify ?rw_control (type "RW"))

)

(defrule map_controls

?lbl_control<-(control_template

(contolType "Label")(type "RO")

(label ?n1)(addPosition ?ap1) (labelStyle

?ls1))

?obj_control<-(control_template

(contolType ~"Label")(addPosition ?ap2))

=>

(if (= ?ap1 ?ap2) then

(modify ?obj_control

(label ?n1)

(labelStyle ?ls1)

(addPosition 0))

 (retract ?lbl_control)

)

)

7

The JSF component tree consists of:

• layout tables which arrange elements on the page;

• pairs of label and input control for scalar values;

• data tables presenting collections;

• action components which invoke actions from the

model.

This GUI generation approach creates only the necessary

controls during the rendering phase. Thus, the discussed

solution improves the readability of the view [17]. The

visualization of the group from Fig. 4, Fig.5 can be seen

on Fig. 8.

Figure 8: Interpreted description result

DATABASE GUI DESCRIPTION

 Fig. 9 shows the relationships between the GUI

description tables. The latter are as follows:

• INSTRUMENT_TYPE (nomenclature table) –

contains the definition of all instrument types, the GUI is

capable to handle. They have a type-subtype pair and a

unique identifier.

• FORM_TYPE (nomenclature table) – contains the

definition of the views, the application consists of.

Every form has a unique identifier.

• GROUP_DATA –contains groups definition:

identification information (unique identifier, group

type) and visualization information (relative positions

in both directions, group style, label, etc.).

• CONTROL_DATA – contains controls definition:

control type, relative position, identifier of the control,

validating, type of the conversion of the input, access

(read-only, read/write), etc.

• GROUP_GROUP_REL (relational table) – defines

the hierarchy of the groups.

• INSTRUMENT_GROUP_REL,

INSTRUMENT_CONTROL_REL_OPP (relational

tables) – give additional constraints and rules for

displaying or hiding groups and controls per

instrument respectively.

Figure 9: Database description tables

8

CONCLUSIONS AND FUTURE WORK

The discussed solution was developed and tested using

sample data. Some results can be seen on fig. 8. The

following conclusions were made:

• The development of a dynamic interface is more time

consuming, compared to direct hard coding the GUI.

However, this investment will pay itself back in later

changes and adaptations of the system because of its

higher flexibility.

• No delays were encountered when processing a

description in either of the formats.

• Both UIDLs are more flexible and simple than using

the standard rendering checks.

• The database-oriented approach benefits from the

easier maintenance and higher availability of the data

centre.

• It allows reuse of groups of components with a single

add. Changes in the group take place in all referencing

hierarchies (one change per all hierarchies);

• Using XML for description definition allows easy and

intuitive input validation.

• Graphic editors are much more intuitive than any 3rd

party database tool or text editor.

• Tree structured XML files are easier to understand and

update in a text editor unlike the database records.

• The latter however provide recursive references to

specific definition unlike XML tree structure.

• The rule-based approach provides an easy-to-extend

framework, where other cases can be handled by adding

new rules.

Advantages and Disadvantages of the Approach

The implemented solution combines the advantages of both

XML and database approaches. They are both platform

independent and cross-technology (they can be processed

by Java as well as .NET). Changes in any of the formats

take place immediately in the application without the need

of recompilation and/or redeployment. Also, access to the

GUI description is fast and robust supported by numerous

libraries providing easy treatment. Using a database

description improves the reusability of the group and/or

control definitions. If used in a desktop application with a

centralized database changes are applied simultaneously to

all the database users. However, this type of description

does not allow a built-in validation of the input structure as

opposed to XML schemas. Moreover, XML description,

unlike database one, can be changed in any simple text

editor. Furthermore, UsiXML provides ready to use graphic

editors which eases the GUI definition even more.

On the other hand, being separately developed languages

the database description UIDL and the UsiXML

specification are not entirely overlapping. This fact limits

the possible elements used to define a GUI description. The

database UIDL is JSF compliant which is too specific for

the UsiXML concept but at the same time increases variety

of components used for GUI definition which is very

important for the needs of the application using the

discussed solution.

REFERENCES

1.Ali, M.F., Perez-Quinones, M.A. and Abrams, M.,

Building Multi-Platform User Interfaces with UIML. in

Multiple User Interfaces, John Wiley and Sons, UK,

2004.

2.Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,

Bouillon, L. and Vanderdonckt, J., A Unifying Reference

Framework for Multi-Target User Interfaces. Interacting

with Computers, 15(3), 2003, 289–308.

3.Coyette, A., Faulkner, S., Kolp, M., Limbourg, Q.,

Vanderdonckt, J., Sketchi-XML: Towards a Multi-Agent

Design Tool for Sketching User Interfaces Based on

UsiXML. in Proc. of Tamodia’2004

4.Geary D., Horstmann C. S, Core Javaserver Faces [Jsf],

Prentice Hall PTR, June 2004

5.Giarratano J. Expert Systems: Principles And

Programming, 4Ed, ISBN: 053438447, CourseTec Ltd.

2004

6.Hoiem, D., Lovell, M., Method and apparatus for a

unified user interface", US patent 7,512,899, 31 March

2009. , Microsoft Corporation,

http://www.freepatentsonline.com/7512899.html

7.J van de Vegte, J., Som de Cerff, W.J., A Dynamic GUI

for accessing the Netherlands SCIAMACHY Data Center,

Montreal, Canada, May 2000

8.Limbourg, Q., Vanderdonckt, J. UsiXML: A User

Interface Description Language Supporting Multiple

Levels of Independence, In Proceedings of Workshop on

Device Independent Web Engineering DIWE'04, Munich,

July 2004

9.Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon,

L., Florins, M., Trevisan, D., UsiXML: A User Interface

Description Language for Context-Sensitive User

Interfaces, In Proceedings of the ACM AVI'2004

Workshop "Developing User Interfaces with XML:

Advances on User Interface Description Languages",

Gallipoli, May 2004

10.Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon,

L., Lopez, V. UsiXML: a Language Supporting Multi-

Path Development of User Interfaces, 9th IFIP Working

Conf. on Engineering for Human-Computer Interaction,

Hamburg, Germany, 2004.

9

11.Luyten, K., Abrams, M., Vanderdonckt, J., Limbourg,

Q. Developing User Interfaces with XML: Advances on

User Interface Description Languages, Advanced Visual

Interfaces, Italy, 2004.

12.Michotte B., Limbourg Q., Vanderdonckt J. GrafiXML,

A User Interface Builder Based on UsiXML, IAG,

Louvain-la-Neuve, July 2004

13.Michotte B., others UsiXML CUI schema specification

team,

http://www.usixml.org/index.php?mod=pages&id=5,

2006

14.Mori, G., Paternò, F. and Santoro, C., Design and

Development of Multidevice User Interfaces through

Multiple Logical Descriptions, IEEE Transactions on

Software Engineering, vol. 30, issue 8, 2004.

15.Myers B., Hudson S. E., Pausch R., Past, Present, and

Future of User Interface Software Tools, ACM

Transactions on Computer-Human Interaction, Vol. 7,

No. 1, March 2000.

16.Paskalev, P., Rule based GUI modification and

adaptation, In proceedings of International Conference

CompSysTech'09, Bulgaria, June 2009

17.Paskalev, P., Serafimova, I., Runtime Generation of an

User Interface, Described in a Database, In proceedings

of International Conference CompSysTech'09, June 2009

18.Puerta, A. and Eisenstein, J. XIML: A Common

Representation for Interaction Data, Sixth International

Conference on Intelligent User Interfaces, 2002.

19.Shaer O., Green M., Jacob R., Luyten K., User Interface

Description Languages for Next Generation User

Interfaces Workshop, CHI 2008 Proceedings, Florence,

Italy,2008

http://www.usixml.org/index.php?mod=pages&id=5

