

1

Storing Data of Ontology-Based Dynamic
Applications

Samuil Nikolov

Eurorisk Systems Ltd.

31, General Kiselov Str., 9002 Varna, Bulgaria

Abstract: The publication describes the approach chosen to store ontological data as part of a
commercial framework that generates dynamic applications. The approach is flexible, allowing
on-the-fly changes of the stored ontology attributes and adding new classes without restructuring
the database and even without interrupting user’s operation. It is based on multilayer vertical
tables and a search table that allows executing fast queries on frequently used parameters.

Keywords: Ontology, Database logical design, Applications with Dynamic User Interface

1. INTRODUCTION

The goal of the publication is to present the chosen approach to building a database that
stores ontological data. In [8], a framework is described that can dynamically generate
applications using a set of scripts (models). Each script defines dynamic user interface
and represents an ontological class with all its attributes. The relations between classes
are represented as a special type of attributes. A set of classes forms a domain which is
actually the application generated by the presented framework. This publication aims at
sharing experience in designing the database storage for the framework. As the software
was initially designed for building banking applications, there were specific requirements
that influenced the decisions on database design, as follows:

• Support of historization (versioning) for the stored ontology instances;

• Storing information about the users that created, modified and eventually marked
as deleted a specific ontology instance and when these actions occurred;

• Separating the data into different organizational entities, hiding the information
between them;

• Possibility to transform stored objects in run time if the attributes of the classes in
the system are changed by supplying newer versions;

• Adding new or changing existing parts of the software unnoticeably to the users
while impacting as little as possible the operation of the system;

• Support for outside reporting tools like crystal reports.

There are two mainstream approaches to solving this problem – storing the data in object
databases that store the ontology class instances automatically or designing a
specialized relational database that can store ontological data. The most prominent
object databases are db4o [12] and DTS/S1 [13] but they have still not asserted their use
- fulness in the world dominated by the relational database model.
The relational databases are an industry standard and a lot of customers already have
such database management systems installed and in operation. This makes their usage
a preferred solution for commercial software, as it can easily fit into customers’ universe.

2

There are numerous ways to store ontological data inside relational databases. The most
common are:

• horizontal class (or table per class approach) [2,3,4,10];

• table per property (attribute) approach [5,6,7];

• hybrid approach from [9];

• vertical table (edge) approach with triplets [1,4].

Some more considerations on the stored data will be introduced besides the above-

mentioned requirements in order to clarify the advantages of the chosen approach:

• The stored data consist of relatively few classes (in the vicinity of hundreds),

containing lots of different properties, including multi field and tabular ones;

• The system has to store large tabular data as part of a certain multi field attribute

of a class. Sometimes the tables stored inside the class instances are very large.

For instance, keeping information about all the loans belonging to a certain portfolio

of a bank results in storing thousands of loan object identifiers in the portfolio object

to account for the existing connections to the loan objects.

2. OVERVIEW OF THE SOLUTION

Considering the mentioned limitations, some of the options of storing the frame- work’s
ontological data can be ruled out immediately. The table per property and the hybrid
approach from [9] are unsuitable due to the vast amount of various properties in- side the
system that would make reconstructing an object irrationally difficult [4] and managing
the database almost impossible.
The table per class approach is the usual way of creating specialized application
databases but it does not suit the requirements for keeping older object versions, as the
new versions would transform the table belonging to the current class. Also, it would be
difficult to restructure the database by e.g. adding new columns, deleting old ones and
creating new tables. This contradicts to the requirement for quick adjustment and least
system wide impact when making changes in the system. Besides, some customers will
not allow running the system with alter and delete table rights granted to it. The author’s
experience with building banking software which uses the table per class approach
shows that the system has to be as adjustable as possible. Otherwise its support be-
comes very difficult and extensibility and operation issues often arise. There are appli-
cations (e.g. SAP) that store data across a large number of tables. However, having
thousands of tables instead of one makes the system harder to manage and operate [1].
The last option to consider is the vertical table, a widely used way of representing
ontological data [1]. The proposed approach is based on it and uses four tables three of
which are vertical and the other one holds additional information to facilitate
implementation-specific requirements. The vertical table approach allows for extensibility
and easy structural changes and is also suitable for managing large classes with many
properties. Figure 1 shows an overview of the used database structure. The table
RF_HEAD is used as a main search table to find an object’s identifier using the most
common search parameters. The table RF_BODY is vertical and contains the main
attributes of the stored objects. The other two tables, which are vertical as well, are in-
dexed using the found object’s identifier (SESSION_ID) and a specific attribute of the
object (VAR_ID). They contain specific additional data about the attribute in the form of
tabular data and metadata about it. The schema will be explained in detail in the
following chapters, showing how it solves the previously stated framework specific
problems.

3

Fig.1. Overview of the used database schema

3. SOLUTION DESCRIPTION

3.1. Representation of ontology class inheritance

In [8] the notion of item identifiers was introduced. An item identifier can have zero or
more sessions associated with it, containing stored object data. Item identifiers can be
used for semantic grouping of unrelated sessions. Each session has its associated model
- the object’s ontology class. The sessions themselves cannot be inherited, but an item
identifier can have multiple object data associated with it, thus providing an extensibility
feature for the data associated to the item identifier. The drawback of the solution is the
possible occurrence of inconsistency in case the base class session is omitted and only
the subclass session exists.
Figure 2 shows a diagram showing the item identifier “Peter Johnson” with several
sessions (or stored class instances) associated with it in two different domains (or
framework-generated applications) – the first one in the context of a factory information
system and the second one - of a tourist information system. Both have general personal
information represented by a saved object (session) of the “Person Data” class. The
domain-specific information is represented by the sessions of “Employee Da- ta” and
“Customer Data” classes. Also, several current condition data sessions are shown on the
figure as different versions of object instances of classes “Last Month Production Data”
and “Current Reservation Data”. The strength of the proposed incremental approach in
building data hierarchies is evident, as in a classical inheritance approach the general
and domain-specific data would be duplicated in all the individual current condition
objects. The mentioned drawback is also clearly demonstrated – the current reservation
data is irrelevant without the personal information or the customer data. Each session
object has an identifier constructed from the item identifier and a system-unique number
generated in a standard way [11]. This session identifier is used as a part of the primary
key in all the tables in the proposed schema.

4

Fig.2. Item identifiers with different sessions in two different domains

3.2. Support of historization, object states and solving data access conflicts.

As mentioned above, the applications generated by the framework have to support object
versioning. The need for this is obvious on Fig. 2, where different versions of objects of
the “Last Month Production Data” class have to store data about the employee’s monthly
work at the factory. Also, these have to contain information about who created the
specific object data and when, who was the last to modify it and also if this is the final
version of the object data (if it is confirmed by a supervising manager). All this
information is stored in the main table of our schema – RF_HEAD. It allows searching for
the session identifier of an object using information about the object’s organizational
entity (table column FIN_CENTER), subdomain (table column MODUL_TYPE), item
identifier (table column ITEM_ID), class (table column MODEL_NAME), time of creation
(table column TIME_STAMP) etc. The purpose of separating frequently used object
attributes in a table is to support fast finding of object keys (session identifiers) and to
use them to reconstruct session objects, most parts of which are stored in the very large
vertical ta- ble RF_BODY.

Fig. 3 Main columns of RF_HEAD table in the proposed database schema

The table RF_HEAD also stores additional information about the actions on the object
(like deletion and modification time stamps), as well as a version number that ensures
data consistency in multiuser operation mode. The number is needed as the time
between opening a session in the framework for modification and storing it back to the
database can be substantial. Many writes can occur during this time and comparing the
initially read version number to the one during writing ensures no overwriting other users’
data occurs.

5

After the required session identifier(s) are found, the sessions can be reconstructed from
the data in the table RF_BODY. It is an inlined [6] vertical table meaning that there are
columns for all the basic types of attributes. Also, it contains a field specifying the
attribute’s actual valid type. The strength of the approach is evident in a system that has
to be translated into many different languages and also reported by an external tool. If
only the strings for multiple choice fields like combo boxes are stored in the database,
translating the class description will cause inconsistency that will result in losing the
stored currently selected item. If only the indexes are stored, proper reporting will be
difficult as the meaning of the values of combo box lists are not always available. There
are special cases of multi field attribute types that are linked to the other tables in the
schema and solve the remaining problems stated at the beginning of the publication.

3.3. Storing large tabular data as attributes

The dynamically generated user interface in the framework from [8] contains grids that
can have dozens of columns and thousands of rows of data. If these were stored in the
common attribute data table – RF_BODY, it would grow quickly to be enormous. That’s
why we introduce a separate table to store them. It is indexed on the object’s session
identifier and the attribute identifier (VAR_ID) of the grid. The grids contain class-specific
multi field attribute data and in special use cases connect the current object to objects of
other classes in the system by storing their item identifiers. Thus, the relations between
the ontology objects are accomplished. The table that stores the grid data - RF_TAB_B is
also a vertical inlined table that contains cell descriptions of the grid data in the form of
triplets (row, column, value) but this time indexed not only on the session identifier, but
also on the attribute identifier.

3.4. Support for external reporting

In order to generate meaningful reports from the data stored in the framework, one has to
obtain some metadata about the attributes of the class objects. In case of simple
attributes, the attribute name, type and string representation are usually sufficient but
when storing the large tabular data described in the above paragraph one will also need
information about the name and type of each column in the stored table. This is solved
using another vertical table – RF_TAB_H - storing the column number, name and type
for a certain tabular attribute in the class description (Fig. 1).

3.5. Support of class attribute changes in run time

The class descriptions, represented by model scripts in the dynamic application
framework can be modified to replace the existing ones in a user’s installation while the
framework is operational. Therefore, the data stored for a certain object should be trans-
formed, on user request, taking into account the new attribute descriptions. In this
process, two phases should be distinguished:

• Determining if the associated model has been changed when a session is
opened for modification or examination;

• Mapping stored data to the attributes described in the model.

In the first phase the stored attribute identifiers and their types are used to deter- mine if

any changes have occurred. The table descriptions are mapped according to the column

types, stored in RF_TAB_H table.

6

In the second phase, the attributes with matching identifiers in the class description and
in the database, are retained while the new ones in the class are added with default
values according to their type. Attributes in the database that have no corresponding at
tributes in the model are removed. This is done only on user request. In some cases, the
old data in the database could be retained for historization. For grid data, the columns
that have the same type are retained and the columns that have different data type or are
newly added are given default values. If the grid description in the class contains fewer
columns, the RF_TAB_H and RF_TAB_B table data is trimmed to the specified size
removing the last columns.

4. CONCLUSIONS

A specific solution for storing data of ontology-based dynamic applications is pro- posed
in the publication. The introduction of the main search table allows quick reconstruction
of ontology objects using frequently queried parameters. Besides, it is suitable to store
additional specific information about the ontology objects like version, users that created
and modified it, when that occurred etc. The multilayer vertical table organization makes
possible easy changes in the existing parts of the software while impacting the system as
little as possible. Also, it permits storing of large grids’ data and metadata about them.
This approach allows substituting class descriptions in run time by transforming sessions
and the usage of external reporting tools. The multilayer organization can be extended
with tables storing other specific data like BLOBS and CLOBS if these are necessary.
The database organization allows the flexibility and extensibility of the dynamic
application framework presented in [8].

5. REFERENCES

[1] Agrawal, R., Somani, A, Xu, Y. (2001) Storage and querying of e-commerce
data, VLDB. Morgan Kaufmann.

[2] Astrova, I., Nahum, K., Ahto, K. (2007) Storing OWL Ontologies in SQL Rela-
tional Databases, Engineering and Technology 1.4, 167-172.

[3] Chen, Li, Martone, M., Gupta, A., Fong, L., Wong-Barnum, M. (2006)
OntoQuest: exploring ontological data made easy, Proc. of the 32nd Int. Conf. on
VLDB.

[4] Dehainsala, H., Pierra, G., Bellatreche, L. (2006) Managing instance data in on-
tology-based databases Technical report, LISI-ENSMA.

[5] Florescu, D., Kossmann, D (1999) A performance evaluation of alternative map-
ping schemes for storing XML data in a relational database Tech. Rep., INRIA.

[6] Florescu, D., Kossmann., D. (1999) Storing and Querying XML Data using an
RDMBS IEEE Data Engineering, Bulletin 22(3), 27-34.

[7] Gali, A., Chen, C., Claypool, K., Uceda-Sosa, R. (2004) From Ontology to Rela-
tional Databases In Proc. of ER (Workshops), 278-289.

[8] Nikolov, S., Antonov, A. (2010) Framework for building ontology-based dynamic
applications ACM Int. Conf. Proc. Series (ICPS) Vol. 471, 83-88.

[9] Pan, Z., Heflin, J. (2004) DLDB: Extending Relational Databases to Support
Semantic Web Queries Design, 303-308.

[10] Vysniauskas, E., Nemuraite, L. (2006) Transforming ontology representation
from OWL to relational database Information Technology and Control 35.3A.

[11] Wieringa, R., de Jonge, W. (1991) The Identification of Objects and Roles Am-
sterdam Technical Report IR-267.

[12] db4Objects - http://www.db4o.com/
[13] DTS/S1 'Pitch Black' - http://www.obsidiandynamics.com/dts/index.html

http://www.db4o.com/
http://www.obsidiandynamics.com/dts/index.html

