

SPEED UP OF NUMERIC CALCULATIONS

USING A GRAPHICS PROCESSING UNIT

(GPU)

 NIKOLA VASILEV, DR. ANATOLIY ANTONOV

Eurorisk Systems Ltd.

31, General Kiselov str.

BG-9002 Varna, Bulgaria

Phone +359 52 612 367

Mobile +359 52 612 371

info@eurorisksystems.com

www.eurorisksystems.com

mailto:info@eurorisksystems.com
http://www.eurorisksystems.com/

2 | Speed up of numeric calculations using a Graphics Processing Unit (GPU)

Contents

Introduction ... 3

The basic concept of GPU accelerated modules ... 3

GPU vs. CPU benchmark example .. 5

Providing high performance random number generation (RNG) 8

Dense Linear Algebra .. 9

Parallel primitives and data structures – THRUST library.. 10

Use cases of development .. 10

Monte Carlo VaR simulation approach on GPU... 11

Longstaff-Schwartz method on GPU ... 15

Concluding words .. 17

3 | Speed up of numeric calculations using a Graphics Processing Unit (GPU)

Introduction

The GPU is a graphics processing unit and represents a "single-chip processor with

integrated transform, lighting, triangle setup/clipping, and rendering engines”. In the financial

sector, the potential of this resource could be used to improve financial computing. This

makes sense, because faster pricing gains more revenue, better modeling contributes to

less risk and maximizing resources enhances the efficiency. Nowadays, GPUs enable the

calculation, simulation, as well as prediction of prices and risk for complex options, OTC

derivates, complex exotic option instruments, in seconds, rather than minutes or even hours.

The architecture of the GPUs makes it possible to run several simulations simultaneously,

thereby increasing the quality of the results. With more confidence in the data, it is possible

to offer tighter spread and gain competitiveness. GPU even provides the means to run

complex models, that up until now could not possibly be ran. Results of very complex models

can be obtained in real/near time, rather than overnight, which provides deeper insight into

exposures, making it possible to rapidly adjust positions and reduce risk.

The basic concept of GPU accelerated modules

The concept of CPU accelerated models is developed separately from the product and is
invoked with input parameters. GPU accelerated modules are designed in two parts – host
and device. ‘Host’ represents tasks for the CPU, such as preparing algorithms, whilst main
computing is intergraded into the ‘device’ part and will deliver the results. GPU acceleration
is only used for massively paralleled algorithms, i.e. for algorithms with at least 1,000
threads. The hardware overview is shown below:

PRODUCT CORE

multi-cored GPU
computatuons

GPU accelerated
module

dynamic library

Invoke with

parameters

Return aggregated result

Parallel runs

HOST

DEVIC

E

4 | Speed up of numeric calculations using a Graphics Processing Unit (GPU)

Another advantage is the multi-GPU support, that theoretically enables much better
performances. For example, systems that have eight identical GPUs will provide results eight
times faster than systems with only one GPU. The access of data between CPU and GPU
is much faster, because of the unified memory architecture. Calculations within GPU
accelerated modules are at least 10 times faster, but it is possible to achieve a speed of up
200 times, depending on the applied parallel algorithm.

In addition, the number of graphical processor cores enables the running of complex analysis
on large portfolios more efficiently, because the saturation of the GPU is much more
complicated, as opposed that of the CPU.

GPU represents a Heterogeneous Parallel Computing (HPC). The difference between CPU
and GPU is shown below:

• CPU is optimized for fast single-thread execution

• CPU cores are designed to execute two or more threads concurrently

• GPU is optimized for high multi-thread throughput

5 | Speed up of numeric calculations using a Graphics Processing Unit (GPU)

• GPU cores are designed to execute several parallel threads concurrently and are

optimized for data-parallel throughput computation

The system’s key feature is that cores of every GPU block are Single Instruction Multiple
Thread (SIMT) cores, i.e. a group of 32 cores will execute the same number of instructions
simultaneously using different data (for example, elements in matrices). SIMT is a natural
choice for many core chips, as it simplifies each core. Threads on each GPU block execute
in groups of 32, called “warps”; execution alternates between “active” warps, with warps
becoming temporarily “inactive” when waiting for data.

GPU vs. CPU benchmark example

We created heavy random filler algorithms, to push the limits of the GPU application. The
results were satisfying. Following benchmarks is an exponential problem, to which the CPU
isn’t the sufficient answer, because of the lack of random numbers and prolonged
computation times. The CPU does produce results, but with complex modifications of
random numbers, whereby the entire process takes longer than a day.

The benchmark task is derived from a medicine application that simulates breast cancer and
looks as follows:

1. Six types of spheres should be randomly placed within a half cylinder container, where

the total volume for every sphere type should be about the same:

∑𝑉1𝑖 =

𝑛

𝑖=1

∑𝑉2𝑗 =∑𝑉1𝑘 =

𝑜

𝑘=1

∑𝑉1𝑝 =∑𝑉1𝑠 =∑𝑉1𝑢

ℎ

𝑢=1

𝑡

𝑠=1

𝑝

𝑟=1

𝑚

𝑗=1

where:

n = 6 - number of spheres with radius r1 = 7.94
m = 11- number of spheres with radius r2 = 6.35
o = 25 - number of spheres with radius r3 = 4.76
p = 83 - number of spheres with radius r4 = 3.175
t = 775- number of spheres with radius r5 = 1.59
h = 6775 - number of spheres with radius r6 = 0.79

2. A sphere should not include other spheres

3. The random sphere packing, that is giving a 64% filling quote, is described in the

following link: http://mathworld.wolfram.com/SpherePacking.html

The random sphere packing task can become very complex and may require large
computation power. The reason is that during the filling of the container, free spaces, in which
the next random sphere is placed, become small and thus a large number of random trials
will be discarded. Sphere types are generated starting with the largest radius. The filling
phases for the 6 different sphere types is shown below.

http://mathworld.wolfram.com/SpherePacking.html

6 | Speed up of numeric calculations using a Graphics Processing Unit (GPU)

One final random sphere packing, that is giving a 64% filling quote, is presented on the next
page.

The random sphere packing task has been run on three hardware platforms: CPU with 8
cores, GPU with 160 cores and GPU with 512 cores. The comparison is performed against

7 | Speed up of numeric calculations using a Graphics Processing Unit (GPU)

a CPU whit 1 core, resulting in a calculation time of 30 hours. The sphere packing time for
the container above, enclosing 6 000 spheres, has been 20 sec. on the third platform.

Processor unit Cores@Clock rate Time Faster then single
core

CPU – intel i7
6700K

8 cores@4.0GHz 300
sec.

x 8

GPU – nVidia
GTX960M

5 blocks x 32
cores@1097MHz

80 sec. X 50

GPU - nVidia
GTX1070

16 blocks x 32
cores@1506MHz

20 sec. X 200

The random sphere packing algorithm was transformed for a parallel run on the GPU/CPU
cores, using the following approach:

1. The filing of the container sequentially, for all sphere types, is performed using a

number of stages.

2. Within every stage, each processor core (or core thread) generates a random sphere.

3. The generated sphere is then checked against all spheres within the container, that

don’t change during the current stage. An attempt to place the sphere in the container

is performed. Steps 2 and 3 are performed by the cores in parallel.

4. All successfully placed spheres are then checked against each other and placed into

the container. This is a sequential task, but the number of successfully placed spheres

is small.

5. This process is then repeated, from point 2 onward, during the following stage. The

algorithm ends when the number of needed spheres is achieved.

Recent speed tests, performed on a benchmark with 30 000 spheres on a 1920 core GPU
(s. bellow, NVidia GeForce GTX 1070), demonstrate that the filling of spheres is executed
under 5 minutes, which is about 800 time faster then a single core.

The comparison between GTX960M and GTX1070 suggests that there are 3 time more
blocks, but the duration is linearly 4 times smaller, because of the Clock rate. This means
that, if this test were ran on faster a GPU, the performance would be much better. Note: this
code is not optimized as much as the CPU code. Pricings for the same high-class CPU and
GPU are shown below:

mailto:8%20cores@4.0GHz

8 | Speed up of numeric calculations using a Graphics Processing Unit (GPU)

Name Cores@Clock rate FP32

Performance

Price

Intel Core i7-6700K 8@4.0Ghz 0.109 TFLOPS $340

NVidia GeForce

GTX 1070

15x128@1506MHz 6.0 TFLOPs $400

NVidia GeForce

GTX1080

24x128@1733MHz 8.7 TFLOPs $600

NVidia Quadro

P5000

24x128@1500MHz 8.9 TFLOPS $2,499

Nvidia Quadro

P4000

16x128@1400MHz 5.3 TFLOPS $769.00

Providing high performance random number generation (RNG)

CuRAND is a library that provides Host API for the generation of random numbers in bulk on
the GPU and has four high-quality RNG algorithms. After conducting tests on actual
problems, the results have been generated two times faster, although this depends on the
quality and the performance of random numbers. The result are shown in figure bellow.
According to nVidia, the generation is up to 75x faster than with a standard intel MKL
generator. This library supports Pseudo- and Quasi-RNGs — MRG32k3a, MTGP, Mersenne
Twister, XORWOW, Sobol generators. It also provides several output distributions (e.g.
uniform, normal, log-normal).

9 | Speed up of numeric calculations using a Graphics Processing Unit (GPU)

The table below shows mean and standard deviation delta to one of the generated simulation
series:

Random numbers mean stddev-1

4k float -0.030914356 0.011161298

16k float -0.002508757 0.000820388

64k float -0.004117639 -0.001202603

128k float 0.000718359 -3.47317E-05

256k 2 x float -0.001716881 0.001135225

128k double 0.001197103 -0.002223814

256k 2 x float -0.001716881 0.001135225

256k 2 x double 0.002675153 4.46802E-06

……………... ……………….. ………………

This test shows that, with the rise of random numbers, the mean is closer to 0 and the
standard deviation is closer to 1, without correction.

Dense Linear Algebra

The NVIDIA cuBLAS library is a fast GPU-accelerated implementation of the standard basic
linear algebra subroutines (BLAS). NVBLAS is a GPU-accelerated version of BLAS, that
further accelerates BLAS Level-3 routines by dynamically routing BLAS calls to one or more
NVIDIA GPUs, as well as CPUs in the system, through the cuBLAS-XT interface.

Researchers and scientists use cuBLAS for developing GPU-accelerated algorithms in areas
such as high performance computing, image analysis and machine learning. cuBLAS
performs up to 5X faster than the latest version of the MKL BLAS on common benchmarks.

10 | Speed up of numeric calculations using a Graphics Processing Unit (GPU)

Parallel primitives and data structures – THRUST library

GPU-accelerated scan, sort, transform and reduce Improved developer productivity via C++
template library, allowing developers to focus on high-level tasks. Library simplifies memory
management and data transfer.

Use cases of development

• Real-Time Options Analytics. Stochastic Volatility Modeling

• Stochastic Volatility + Jumps Modeling. Large-Scale Interest-Rate Swaps Risk

• Large-Scale Monte Carlo Risk, Large-Scale Parametric VaR

• Basket Barrier-Option (Monte Carlo)

• Derivatives simulation, ABS/SPV simulation. Complex exotic option simulation

11 | Speed up of numeric calculations using a Graphics Processing Unit (GPU)

Monte Carlo VaR simulation approach on GPU

In the figure above, a 3D matrix is displayed, representing an abstraction of the GPU
processing unit. The dimensions express the following:

• dimension “k” represents each block;

• dimension “I” represents each core;

• dimension “j” represents each thread;

In conclusion, the length of dimension j should be at least 32, because of the warp size. The
multiplication of k x i should give all CUDA cores in our hardware.

Monte Carlo Simulations correspond to an algorithm that generates random numbers, which
are used to compute the distribution of a formula without a closed (analytical) form. This
means that we need to proceed to some trial in picking up random numbers/events and

12 | Speed up of numeric calculations using a Graphics Processing Unit (GPU)

assess what the formula yields to approximate the solution. Drawing random numbers over
a large number of times (a few hundred to a few million, depending on the problem at stake)
will give a good indication of what the output of the formula should be. Computing VaR with
Monte Carlo Simulations is very similar to Historical Simulations. The main difference lies in
the first step of the algorithm – instead of using the historical data for the price (or returns) of
the asset and assuming that this return (or price) can reoccur in the next time interval, we
generate a random number that will be used to estimate the distribution of the return (or
price) of the asset at the end of the analysis horizon. The algorithm for a multi-step Monte
Carlo is described in the following steps:

1. Determine the time horizon t for our analysis and divide it equally into small time

periods, i.e. (dt = t/n).

2. Draw a random number from a random number generator and update the price of the

asset at the end of the first time increment.

It is possible to generate random returns or prices. In most cases, the generator of
random numbers will follow a specific theoretical distribution. This may be a weakness
of Monte Carlo Simulations, compared to Historical Simulations that use empirical
distributions. When simulating random numbers, we generally use normal distribution,
but other distributions are possible as well.

In this article, we use the standard stock price model to simulate the path of a stock
price from the i-th day as defined by:

• Ri – return of the stock on the i-th day

• Si – stock price on the i-th day

• Si+1 – stock price on the i+1st day

• – sample mean of the stock price

• – timestep

• – sample volatility (standard deviation) of the stock price

• – random number generated from a normal distribution

At the end of this step/day (= 1 day), we have drawn a random number and
determined Si+1, since all other parameters can be determined or estimated.

3. Repeat Step 2 until reaching the end of the analysis horizon T by walking along the

N time intervals.

4. Repeat Steps 2 and 3 a number M of times to generate M different paths for the

stock over T.

5. Rank the M terminal stock prices from smallest to largest, read the simulated value

in this series that corresponds to the desired (1-) confidence level (generally 95%

or 99%) and deduce the relevant VaR, which represents the difference between the

current price and the stock price at the confidence level.

Let us assume that we want the VaR with a 99% confidence interval. In order to obtain it, we
first need to rank the M terminal stock prices from lowest to highest.

13 | Speed up of numeric calculations using a Graphics Processing Unit (GPU)

Then we read the 1% lowest percentile in this series. This estimated terminal price,
Si+T1% means that there is a 1% chance that the current stock price Si could fall to
Si+T1% or less during the considered period in and under normal market conditions.

If Si+T1% is smaller than Si (which is the case most of the time), then Si – Si+T1% will
correspond to a loss. This loss represents the VaR with a 99% confidence interval.

In the past decade, there have been a lot of improvements in VaR models. In reality,
however, the greatest importance should be ascribed to computational constrains. Every
time a trade takes places, for example, the position of two economic agents is updated, and
two VaR computations are required. The most active futures exchanges in the world
nowadays experience at least 1 000 000 in around 10 000 secs. On average, this requires
at least 100 VaR computations per second. With the development of new hardware and
improvements of processor speed, parallel computing has been broadly used in the finance
area. One of this area’s representatives is the GPU. GPUs are originally designed to
efficiently manipulate computer graphics. Their parallel structure makes them highly effective
at a variety of complex algorithms, in comparison to general-purpose CPUs.

Nowadays, GPU is widely used in financial computing, such as VaR estimating, option
pricing, etc. A lot of general methods, that have been used in the area of finance, such as
Finite Differences, Random number generation, Monte Carlo test case, dynamic
programming, etc., can be greatly accelerated by the GPU. Michael Feldman, a HPCwire
editor, states that GPU computing is one of the “new kids” on the Wall Street, a technology
that is making inroads across nearly every type of HPC application.

Algorithm schedule:

1. Read factors, with static values at T0, the volatility, correlation matrix and Portfolio

model

Approach in this step is to extract risk factors from PMS and values to T0. In further

steps, the triangular correlation matrix, which is extracted from the PMS, should also

be extracted here.. The portfolio model in PMS for Monte Carlo VaR simulations is

displayed in the form of a portfolio tree, which portrays a representation in memory of

class based node relations. In the CUDA architecture, this tree cannot be computed.

The approach here is to extract portfolio nodes only with necessary data (number,

left, right, value, days) and aggregate it in CUDA dll library as arrays.

2. Generate random vector series using all available threads simultaneously.

Random vectors can be generated via GPU cores in parallel, because it represents a
multiplication of a Cholesky correlation matrix and normally distributed random floating
point numbers. Here, the advantage of the GPU is that because all matrix elements
can be computed in parallel and on the other side, the cuRand generator is more
efficient.

14 | Speed up of numeric calculations using a Graphics Processing Unit (GPU)

Load data

Allocation
for random

matrix

Random
generation

Calculate
series

Aggregate

statistics

CuRan

d

Use

Allocate common matrix

for all factors in portfolio

Number of runs

Correlation matrix

Portfolio tree

Volatility vector

Factors

Each hardware thread

will calculate several

simulation runs

Correlated series,

Cholesky matrix

Portfolio

tree

15 | Speed up of numeric calculations using a Graphics Processing Unit (GPU)

3. Synchronize threads

Before starting a computation, all threads should be synchronized in parallel. This step
is major, because every thread should require the same length of time for the same
number of simulation runs .

4. Calculate all series in parallel

This is the main part of the algorithm, as it works with common constant resources –
correlation matrix and portfolio tree – that are used for data in parallel.. The tree is a
compute rule based model. Depending on the hardware, each thread will compute
several runs. Result will be stored in an array, which cannot be collisional.

5. Aggregate and return statistic to application

Example: If a client wants the numbers of a run to be 5 000 000, in step 2 a matrix will be
generated in advance, having the size “Number of factors” x 2 000 000. After that, the
simulation will start and the GPU will allocate 61 440 threads (1920 x 32). Afterwards,
various results will be calculated for each thread (~80 runs per thread). Finally, all results will
be returned and aggregated.

With the proper hardware, one can expect an acceleration that is at least 100 times faster
than with the CPU implementation. With the increasing number of runs, errors in final results
will be minimal. For example, 5 000 000 runs with a confidence 99.9% will have a statistical
error of 1.41% , compared to 10 000 runs with statistical errors of 31.62%.

Longstaff-Schwartz method on GPU

Option pricing is an important area of banks’ activities. Nowadays, the most common type of
options are American type options. These options represent contracts that give the option’s
buyer the right, but not the obligation, to buy or sell an underlying asset, where the right can
be exercised at any point until the expiry date. This last condition implies that the pricing of
an American option is much harder than that of an European version.

The value of the option over time can be described as a partial differential equation, called
the Black-Scholes equation, which is:

Where:

• S - price of the underlying asset at time t

• u - value of the option

• r - risk-free interest rate

• t - time, where t = 0 denotes the present and T represents the expiration time

• σ - volatility of the underlying asset

• K - strike price

16 | Speed up of numeric calculations using a Graphics Processing Unit (GPU)

The entire LSM schedule is described below:

1. Load derivate parameters

2. Initialize paths Si(t), where t=0,t1…tN, i=1,2,…M

3. Put Pi = g(Si(tN)) for all i

4. For each t = (tN-1 to t1)

4.1. Find paths { i1 , i2, … iN } s.t. g(Si(t)) > 0, i.e. that are in-the-money path (itm_paths)

4.2. Let xi = Si(t)

4.3. Let yi = e-rΔtPi for i ⊆ itm_paths

4.4. Perform regression on x, y to obtain beta coefficients

4.5. Estimate the value of continuation C(Si(t)) and calculate the value of immediate

exercise g(Si(t)) for i ⊆ itm_paths

4.6. For i from 1 to M do

4.6.1. If i ⊆ itm_paths and g(Si(t)) > C(Si(t)) -> Pi = g(Si(t))

4.6.2. Else Pi = yi

4.6.3. Calculate price

𝑝𝑟𝑖𝑐𝑒 =
1

𝑀
∑𝑒−𝑟∆𝑡
𝑀

𝑖=1

𝑃𝑖

Where:

• M – number of paths

• N – number of time steps

• S – price of underlying asset

• g(S(t)) – payoff at time t

• P – current payoff

• C – value of continuation

The initial value of the Stock price at time T is:

𝑆 = 𝑆0. 𝑒
𝑇.(𝑟−

𝜎2

2
)+𝜎.√𝑇.𝑛𝑟𝑎𝑛𝑑(𝑟)

, where r is 0 to the number of paths

Value of S is:

𝑆 = 𝑆0. 𝑒
𝑡(𝑖).(𝑟−

𝜎2

2
)+𝜎.√

𝑇

𝑁
.𝑡(𝑖).𝑛𝑟𝑎𝑛𝑑(𝑟)

, where I is to 0 to the number of time steps

This algorithm will be suitable for Heterogeneous Parallel Computing on GPU, because it has
a lot of data that is independent to each other. For example, each time step can be computed
on a separate GPU core, and computations of stock price paths can be grouped in warps.
This means that, for example, each thread warp should compute a minimum of 32 paths. The
architecture provides the use of GPU cache memory to store matrices for each time step.
The reason for this is that different values are computed for each step.

The performance of algorithms is increased by valuating large numbers of options in large
slices of exercising time, because of high computation power and high level of parallelism. It
is expected to achieve a speed up between 10 and 100 times, depending on the time slice
of the exercising time.

17 | Speed up of numeric calculations using a Graphics Processing Unit (GPU)

Concluding words

Real time risk management is a problem for the financial industry today, where pushing GPU
computing would provide faster analysis. GPUs are used by major financial institutions for
quant finances. Performance gains will be at least 10x “dollar for dollar”. In general,
developers would parallelize their code. This will provide finance software with the advances
of many-core hardware.

